Tags: quantum dots


Quantum dots have a small, countable number of electrons confined in a small space. Their electrons are confined by having a tiny bit of conducting material surrounded on all sides by an insulating material. If the insulator is strong enough, and the conducting volume is small enough, then the confinement will force the electrons to have discrete (quantized) energy levels. These energy levels can influence the device behavior at a macroscopic scale, showing up, for example, as peaks in the conductance. Because of the quantized energy levels, quantum dots have been called "artificial atoms." Neighboring, weakly-coupled quantum dots have been called "artificial molecules."

Learn more about quantum dots from the many resources on this site, listed below. More information on Quantum dots can be found here.

Resources (1-20 of 92)

  1. Quantum Dot Lab - A Novel Visualization Tool using Jupyter

    09 Oct 2017 | | Contributor(s):: Khaled Aboumerhi

    As semiconductor devices scale down into the nano regime, deep understanding of quantum mechanical properties of nano-structures become increasingly essential. Quantum dots are famous examples of such nano-structures. Quantum dots have attracted a lot of attention over the last two decades due...

  2. Synthesis and Characterization of CdSe Qunatum Dots

    11 Jan 2017 | | Contributor(s):: Nicholas Blake

    In this laboratory, students will study how surfactant-based chemistry can be used to synthesize CdSe quantum dots and study how the size of the quantum dots can be controlled by varying reaction time. The laboratory will  demonstrate how the color of these quantum dots can be connected to...

  3. Valley Dependent g-factors in Silicon: Role of Spin-Orbit and Micromagnets

    13 Dec 2016 | | Contributor(s):: Rajib Rahman

    In this talk I will show that spin splittings in silicon quantum dots are inherently valley-dependent. Interface disorder, such as monoatomic steps, can strongly affect the intrinsic spin-orbit coupling and can cause device-to-device variations in g-factors. I will also describe the anisotropy...

  4. E304 L8.1.3: Nanophotonics - Quantum Dots

    15 Jun 2016 |

  5. Universal Behavior of Strain in Self-assembled Quantum Dots

    05 May 2016 | | Contributor(s):: Hesameddin Ilatikhameneh, Tarek Ahmed Ameen, Gerhard Klimeck, Rajib Rahman

    This resource contains the universal behavior strain files produced by Nemo5. Attached also a Matlab script that can utilize the these compact descriptive files to produce the full strain distribution.  Supported QD shapes; Cuboid, Dome, Cone, and Pyramid. Supported material systems;...

  6. Screening Effect on Electric Field Produced by Spontaneous Polarization in ZnO Quantum Dot in Electrolyte

    05 Jan 2016 | | Contributor(s):: Xinia Meshik, Min S. Choi, Mitra Dutta, Michael Stroscio

    IWCE 2015 presentation. in this paper, the calculation of the strength of the electrostatic field produced by zno quantum dots due to the spontaneous polarization in a physiological electrolyte and its application on retinal horizontal cells are presented.

  7. Structure and Morphology of Silicon-Germanium Thin Films

    07 Feb 2015 | | Contributor(s):: Brian Demczyk

    This presentation describes the growth of (Si,Ge & SiGe) thin films on Si and Ge (001) and (111) substrates by ultrahigh vacuum chemical vapor deposition (UHVCVD). Thin films were characterized structurally by conventional and high-resolution transmission electron microscopy (TEM) and...

  8. Structure and Morphology of Silicon Germanium Thin Films

    30 Dec 2013 | | Contributor(s):: Brian Demczyk

    Single layer silicon and germanium films as well as nominally 50-50 silicon-germanium alloys were deposited on single crystal silicon and germanium (001) and (111) substrates by ultrahigh vacuum chemical vapor deposition. These films spanned the range of + 4 % film-substrate lattice mismatch. A...

  9. Excited State Spectroscopy of a Quantum Dot Molecule

    11 Jan 2013 | | Contributor(s):: Muhammad Usman

    Atomistic electronic structure calculations are performed to study the coherent inter-dot couplings of the electronic states in a single InGaAs quantum dot molecule. The experimentally observed excitonic spectrum by Krenner et al (Phys. Rev. Lett. 94 057402, 2005) is quantitatively reproduced,...

  10. Quantum Dot Quantum Computation Simulator

    04 Aug 2012 | | Contributor(s):: Brian Sutton

    Performs simulations of quantum dot quantum computation using a model Hamiltonian with an on-site magnetic field and modulated inter-dot exchange interaction.

  11. NEMO5 Tutorial 5A: Devi ce Simulation - Quantum Dots

    17 Jul 2012 | | Contributor(s):: Jean Michel D Sellier

    This presentation introduces the capabilities of NEMO5 to simulate quantum dots.

  12. Quantum Dot based Photonic Devices

    19 Mar 2012 | | Contributor(s):: Muhammad Usman

    Deployment of nanometer-sized semiconductor quantum dots (QDs) in the active region ofphotonic devices such as lasers, semiconductor optical amplifiers (SOA's), photo-detectors etc.for the next generation communication systems offers unique characteristics such astemperature-insensitivity, high...

  13. NEMO3D User Guide for Quantum Dot Simulations

    29 Nov 2011 | | Contributor(s):: M. Usman, Gerhard Klimeck

    NEMO 3D is a large and complex simulator; and understanding of its source code requires considerable knowledge of quantum mechanics, condensed matter theory, and parallel programming.

  14. Polarization Response of Multi-layer InAs Quantum Dot Stacks

    20 Oct 2011 | | Contributor(s):: Muhammad Usman

    Recent experimental measurements, without any theoretical guidance, showed that isotropic polarization response can be achieved by increasing the number of QD layers in a QD stack. In this work, we analyse the polarization response of multi-layer quantum dot stacks containing up to nine quantum...

  15. BME 695L Lecture 5: Nanomaterials for Core Design

    14 Sep 2011 | | Contributor(s):: James Leary

    See references below for related reading.5.1      Introduction5.1.1    core building blocks5.1.2    functional cores5.1.3    functionalizing the core surface5.2      Ferric...

  16. The History of Semiconductor Heterostructures Research: From Early Double Heterostructure Concept to Modern Quantum Dot Structures

    21 Jun 2011 | | Contributor(s):: Zhores I. Alferov

    It would be very difficult today to imagine solid-state physics without semiconductor heterostructures. Semiconductor heterostructures and especially double heterostructures, including quantum wells, quantum wires and quantum dots, currently comprise the object of investigation of two thirds of...

  17. Illinois ECE598XL Semiconductor Nanotechnology - 3 - Quantum Dots: Formation

    15 Jun 2011 | | Contributor(s):: Xiuling Li

  18. Quantitative Modeling and Simulation of Quantum Dots

    16 Jul 2010 | | Contributor(s):: Muhammad Usman

    Quantum dots grown by self-assembly process are typically constructed by 50,000 to 5,000,000 structural atoms which confine a small, countable number of extra electrons or holes in a space that is comparable in size to the electron wavelength. Under such conditions quantum dots can be...

  19. Tutorial 4b: Introduction to the NEMO3D Tool - Electronic Structure and Transport in 3D

    23 Mar 2011 | | Contributor(s):: Gerhard Klimeck

    Electronic Structure and Transport in 3D - Quantum Dots, Nanowires and Ultra-Thin Body Transistors

  20. Quantum Dot Wave Function (Quantum Dot Lab)

    02 Feb 2011 | | Contributor(s):: Gerhard Klimeck, David S. Ebert, Wei Qiao

    Electron density of an artificial atom. The animation sequence shows various electronic states in an Indium Arsenide (InAs)/Gallium Arsenide (GaAs) self-assembled quantum dot.