Support

Support Options

Submit a Support Ticket

 

Tags: quantum dots

Description

Quantum dots have a small, countable number of electrons confined in a small space. Their electrons are confined by having a tiny bit of conducting material surrounded on all sides by an insulating material. If the insulator is strong enough, and the conducting volume is small enough, then the confinement will force the electrons to have discrete (quantized) energy levels. These energy levels can influence the device behavior at a macroscopic scale, showing up, for example, as peaks in the conductance. Because of the quantized energy levels, quantum dots have been called "artificial atoms." Neighboring, weakly-coupled quantum dots have been called "artificial molecules."

Learn more about quantum dots from the many resources on this site, listed below. More information on Quantum dots can be found here.

Resources (1-20 of 87)

  1. Illinois ABE 446 Lecture 3: Quantum Dots and Polymers

    11 Feb 2010 | Teaching Materials | Contributor(s): Kaustubh Bhalerao

    NCN@illinois

    http://nanohub.org/resources/8422

  2. 2005 Molecular Conduction and Sensors Workshop

    27 Jul 2005 | Workshops

    This is the 3rd in a series of annual workshops on Molecular Conduction. The prior workshops have been at Purdue University, W. Lafayette, IN (2003) and Nothwestern University, Evanston, IL...

    http://nanohub.org/resources/140

  3. 3D wavefunctions

    12 Apr 2010 | Animations | Contributor(s): Saumitra Raj Mehrotra, Gerhard Klimeck

    In quantum mechanics the time-independent Schrodinger's equation can be solved for eigenfunctions (also called eigenstates or wave-functions) and corresponding eigenenergies (or energy levels) for...

    http://nanohub.org/resources/8805

  4. A Gentle Introduction to Nanotechnology and Nanoscience

    13 Feb 2006 | Online Presentations | Contributor(s): Mark A. Ratner

    While the Greek root nano just means dwarf, the nanoscale has become a giant focus of contemporary science and technology. We will examine the fundamental issues underlying the excitement...

    http://nanohub.org/resources/1021

  5. A MATLAB code for Hartree Fock calculation of H-H ground state bondlength and energy using STO-4G

    08 Aug 2006 | Downloads | Contributor(s): Amritanshu Palaria

    Hartree Fock (HF) theory is one of the basic theories underlying the current understanding of the electronic structure of materials. It is a simple non-relativistic treatment of many electron...

    http://nanohub.org/resources/1718

  6. Active Photonic Nanomaterials: From Random to Periodic Structures

    06 Feb 2006 | Online Presentations | Contributor(s): Hui Cao

    Active photonic nanomaterials, which have high gain or large nonlinearity, are essential to the development of nanophotonic devices and circuits. In this talk, I will provide a review of our...

    http://nanohub.org/resources/1012

  7. Atomic Force Microscopy

    01 Dec 2005 | Online Presentations | Contributor(s): Arvind Raman

    Atomic Force Microscopy (AFM) is an indispensible tool in nano science for the fabrication, metrology, manipulation, and property characterization of nanostructures. This tutorial reviews some of...

    http://nanohub.org/resources/520

  8. Atomistic Alloy Disorder in Nanostructures

    26 Feb 2007 | Online Presentations | Contributor(s): Gerhard Klimeck

    Electronic structure and quantum transport simulations are typically performed in perfectly ordered semiconductor structures. Bands and modes are defined resulting in quantized conduction and...

    http://nanohub.org/resources/2350

  9. Atomistic Modeling and Simulation Tools for Nanoelectronics and their Deployment on nanoHUB.org

    16 Dec 2010 | Online Presentations | Contributor(s): Gerhard Klimeck

    At the nanometer scale the concepts of device and material meet and a new device is a new material and vice versa. While atomistic device representations are novel to device physicists, the...

    http://nanohub.org/resources/10199

  10. Bandstructure in Nanoelectronics

    01 Nov 2005 | Online Presentations | Contributor(s): Gerhard Klimeck

    This presentation will highlight, for nanoelectronic device examples, how the effective mass approximation breaks down and why the quantum mechanical nature of the atomically resolved material...

    http://nanohub.org/resources/381

  11. Bionanotechnology: a different perspective

    30 Apr 2008 | Online Presentations | Contributor(s): Murali Sastry

    The study of the synthesis, exotic properties, assembly/packaging and potential commercial application of nanomaterials is an extremely important topic of research that is expected to have...

    http://nanohub.org/resources/4402

  12. BME 695L Lecture 5: Nanomaterials for Core Design

    03 Oct 2011 | Online Presentations | Contributor(s): James Leary

    See references below for related reading. 5.1      Introduction 5.1.1    core building blocks 5.1.2    functional...

    http://nanohub.org/resources/12057

  13. Control of Exchange Interaction in a Double Dot System

    05 Feb 2004 | Online Presentations | Contributor(s): Mike Stopa

    As Rolf Landauer observed in 1960, information is physical. As a consequence, the transport and processing of information must obey the laws of physics. It therefore makes sense to base the laws...

    http://nanohub.org/resources/152

  14. Coulomb Blockade Simulation

    05 Jul 2006 | Tools | Contributor(s): Xufeng Wang, Bhaskaran Muralidharan, Gerhard Klimeck

    Simulate Coulomb Blockade through Many-Body Calculations in a single and double quantum dot system

    http://nanohub.org/resources/coulombsim

  15. Designing Nanocomposite Materials for Solid-State Energy Conversion

    10 Nov 2005 | Online Presentations | Contributor(s): Timothy D. Sands

    New materials will be necessary to break through today's performance envelopes for solid-state energy conversion devices ranging from LED-based solid-state white lamps to thermoelectric...

    http://nanohub.org/resources/832

  16. Designing Nanocomposite Thermoelectric Materials

    08 Nov 2005 | Online Presentations | Contributor(s): Timothy D. Sands

    This tutorial reviews recent strategies for designing high-ZT nanostructured materials, including superlattices, embedded quantum dots, and nanowire composites. The tutorial highlights the...

    http://nanohub.org/resources/383

  17. Development of a Nanoelectronic 3-D (NEMO 3-D ) Simulator for Multimillion Atom Simulations and Its Application to Alloyed Quantum Dots

    14 Jan 2008 | Papers | Contributor(s): Gerhard Klimeck, Timothy Boykin

    Material layers with a thickness of a few nanometers are common-place in today’s semiconductor devices. Before long, device fabrication methods will reach a point at which the other two...

    http://nanohub.org/resources/3819

  18. Engineering at the nanometer scale: Is it a new material or a new device?

    06 Nov 2007 | Online Presentations | Contributor(s): Gerhard Klimeck

    This seminar will overview NEMO 3D simulation capabilities and its deployment on the nanoHUB as well as an overview of the nanoHUB impact on the community.

    http://nanohub.org/resources/3504

  19. Engineering Nanomedical Systems

    16 Nov 2007 | Online Presentations | Contributor(s): James Leary

    This tutorial will cover general problems and approaches to the design of engineered nanomedical systems. An example to be covered is the engineering design of programmable multilayered...

    http://nanohub.org/resources/3539

  20. Engineering Nanomedical Systems

    06 Mar 2006 | Online Presentations | Contributor(s): James Leary

    This tutorial discusses general problems and approaches to the design of engineered nanomedical systems. One example given is the engineering design of programmable multilayered nanoparticles...

    http://nanohub.org/resources/1093

nanoHUB.org, a resource for nanoscience and nanotechnology, is supported by the National Science Foundation and other funding agencies. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.