Tags: quantum dots


Quantum dots have a small, countable number of electrons confined in a small space. Their electrons are confined by having a tiny bit of conducting material surrounded on all sides by an insulating material. If the insulator is strong enough, and the conducting volume is small enough, then the confinement will force the electrons to have discrete (quantized) energy levels. These energy levels can influence the device behavior at a macroscopic scale, showing up, for example, as peaks in the conductance. Because of the quantized energy levels, quantum dots have been called "artificial atoms." Neighboring, weakly-coupled quantum dots have been called "artificial molecules."

Learn more about quantum dots from the many resources on this site, listed below. More information on Quantum dots can be found here.

All Categories (21-40 of 109)



  2. emiley krystine herbert

    '''----== ^,,Hello My name's Emiley Krystine. I'm fifteen years old and i'm a freshmen in high school. I am very interested in science. My favorite subjects are Nanotechnology, Astrophysics,...


  3. NEMO3D User Guide for Quantum Dot Simulations

    29 Nov 2011 | Papers | Contributor(s): M. Usman, Gerhard Klimeck

    NEMO 3D is a large and complex simulator; and understanding of its source code requires considerable knowledge of quantum mechanics, condensed matter theory, and parallel programming.


  4. Polarization Response of Multi-layer InAs Quantum Dot Stacks

    25 Oct 2011 | Online Presentations | Contributor(s): Muhammad Usman

    Recent experimental measurements, without any theoretical guidance, showed that isotropic polarization response can be achieved by increasing the number of QD layers in a QD stack. In this work,...


  5. BME 695L Lecture 5: Nanomaterials for Core Design

    03 Oct 2011 | Online Presentations | Contributor(s): James Leary

    See references below for related reading. 5.1      Introduction 5.1.1    core building blocks 5.1.2    functional...


  6. The History of Semiconductor Heterostructures Research: From Early Double Heterostructure Concept to Modern Quantum Dot Structures

    11 Jul 2011 | Online Presentations | Contributor(s): Zhores I. Alferov

    It would be very difficult today to imagine solid-state physics without semiconductor heterostructures. Semiconductor heterostructures and especially double heterostructures, including quantum...


  7. Illinois ECE598XL Semiconductor Nanotechnology - 3 - Quantum Dots: Formation

    27 Jun 2011 | Online Presentations | Contributor(s): Xiuling Li


  8. Maksym Plakhotnyuk


  9. with what equations I can calculate photoluminescence spectra of Quantum Dots?

    Closed | Responses: 0

    I want to find theoretically photo and electro luminescence of self assembled InAs/GaAs QDs in a PIN diode...


  10. Quantitative Modeling and Simulation of Quantum Dots

    18 Apr 2011 | Presentation Materials | Contributor(s): Muhammad Usman

    Quantum dots grown by self-assembly process are typically constructed by 50,000 to 5,000,000 structural atoms which confine a small, countable number of extra electrons or holes in a space that is...


  11. Tutorial 4b: Introduction to the NEMO3D Tool - Electronic Structure and Transport in 3D

    29 Mar 2011 | Online Presentations | Contributor(s): Gerhard Klimeck

    Electronic Structure and Transport in 3D - Quantum Dots, Nanowires and Ultra-Thin Body Transistors


  12. Quantum Dot Wave Function (Quantum Dot Lab)

    02 Feb 2011 | Animations | Contributor(s): Gerhard Klimeck, David S. Ebert, Wei Qiao

    Electron density of an artificial atom. The animation sequence shows various electronic states in an Indium Arsenide (InAs)/Gallium Arsenide (GaAs) self-assembled quantum dot.


  13. Self-Assembled Quantum Dot Structure (pyramid)

    02 Feb 2011 | Animations | Contributor(s): Gerhard Klimeck, Insoo Woo, Muhammad Usman, David S. Ebert

    Pyramidal InAs Quantum dot. The quantum dot is 27 atomic monolayers wide at the base and 15 atomic monolayers tall.


  14. Quantum Dot Wave Function (still image)

    31 Jan 2011 | Animations | Contributor(s): Gerhard Klimeck, David S. Ebert, Wei Qiao

    Electron density of an artificial atom. The image shown displays the excited electron state in an Indium Arsenide (InAs) / Gallium Arsenide (GaAs) self-assembled quantum dot.


  15. Self-Assembled Quantum Dot Wave Structure

    31 Jan 2011 | Animations | Contributor(s): Gerhard Klimeck, Insoo Woo, Muhammad Usman, David S. Ebert

    A 20nm wide and 5nm high dome shaped InAs quantum dot grown on GaAs and embedded in InAlAs is visualized.


  16. Modeling the quantum dot growth in the continuum approximation

    12 Jan 2011 | Papers | Contributor(s): Peter Cendula

    Quantum dots can grow spontaneously during molecular beam epitaxy of two materials with different lattice parameters, Stranski-Krastanow growth mode. We study a mathematical model based on the...


  17. Atomistic Modeling and Simulation Tools for Nanoelectronics and their Deployment on nanoHUB.org

    16 Dec 2010 | Online Presentations | Contributor(s): Gerhard Klimeck

    At the nanometer scale the concepts of device and material meet and a new device is a new material and vice versa. While atomistic device representations are novel to device physicists, the...


  18. Test for Quantum Dot Lab tool

    09 Nov 2010 | Teaching Materials | Contributor(s): SungGeun Kim, Saumitra Raj Mehrotra

    This test is aimed at self-learning students or instructors who may be engaged in teaching classes related to the quantum dot lab tool. The level of this test should not be difficult for a...


  19. Nanoelectronic Modeling Lecture 34: Alloy Disorder in Quantum Dots

    05 Aug 2010 | Online Presentations | Contributor(s): Gerhard Klimeck, Timothy Boykin, Chris Bowen

    This presentation discusses the consequences of Alloy Disorder in strained InGaAs Quantum Dots Reminder of the origin of bandstructure and bandstructure engineering What happens when...


  20. Nanoelectronic Modeling Lecture 32: Strain Layer Design through Quantum Dot TCAD

    04 Aug 2010 | Online Presentations | Contributor(s): Gerhard Klimeck, Muhammad Usman

    This presentation demonstrates the utilization of NEMO3D to understand complex experimental data of embedded InAs quantum dots that are selectively overgrown with a strain reducing InGaAs layer....