Tags: quantum dots

Description

Quantum dots have a small, countable number of electrons confined in a small space. Their electrons are confined by having a tiny bit of conducting material surrounded on all sides by an insulating material. If the insulator is strong enough, and the conducting volume is small enough, then the confinement will force the electrons to have discrete (quantized) energy levels. These energy levels can influence the device behavior at a macroscopic scale, showing up, for example, as peaks in the conductance. Because of the quantized energy levels, quantum dots have been called "artificial atoms." Neighboring, weakly-coupled quantum dots have been called "artificial molecules."

Learn more about quantum dots from the many resources on this site, listed below. More information on Quantum dots can be found here.

All Categories (41-60 of 115)

  1. Self-Assembled Quantum Dot Wave Structure

    31 Jan 2011 | Animations | Contributor(s): Gerhard Klimeck, Insoo Woo, Muhammad Usman, David S. Ebert

    A 20nm wide and 5nm high dome shaped InAs quantum dot grown on GaAs and embedded in InAlAs is visualized.

    http://nanohub.org/resources/10689

  2. Modeling the quantum dot growth in the continuum approximation

    12 Jan 2011 | Papers | Contributor(s): Peter Cendula

    Quantum dots can grow spontaneously during molecular beam epitaxy of two materials with different lattice parameters, Stranski-Krastanow growth mode. We study a mathematical model based on the...

    http://nanohub.org/resources/10365

  3. Atomistic Modeling and Simulation Tools for Nanoelectronics and their Deployment on nanoHUB.org

    16 Dec 2010 | Online Presentations | Contributor(s): Gerhard Klimeck

    At the nanometer scale the concepts of device and material meet and a new device is a new material and vice versa. While atomistic device representations are novel to device physicists, the...

    http://nanohub.org/resources/10199

  4. Test for Quantum Dot Lab tool

    09 Nov 2010 | Teaching Materials | Contributor(s): SungGeun Kim, Saumitra Raj Mehrotra

    This test is aimed at self-learning students or instructors who may be engaged in teaching classes related to the quantum dot lab tool. The level of this test should not be difficult for a...

    http://nanohub.org/resources/9968

  5. Nanoelectronic Modeling Lecture 34: Alloy Disorder in Quantum Dots

    05 Aug 2010 | Online Presentations | Contributor(s): Gerhard Klimeck, Timothy Boykin, Chris Bowen

    This presentation discusses the consequences of Alloy Disorder in strained InGaAs Quantum Dots Reminder of the origin of bandstructure and bandstructure engineering What happens when...

    http://nanohub.org/resources/9279

  6. Nanoelectronic Modeling Lecture 32: Strain Layer Design through Quantum Dot TCAD

    04 Aug 2010 | Online Presentations | Contributor(s): Gerhard Klimeck, Muhammad Usman

    This presentation demonstrates the utilization of NEMO3D to understand complex experimental data of embedded InAs quantum dots that are selectively overgrown with a strain reducing InGaAs layer....

    http://nanohub.org/resources/9272

  7. Nanoelectronic Modeling Lecture 31a: Long-Range Strain in InGaAs Quantum Dots

    04 Aug 2010 | Online Presentations | Contributor(s): Gerhard Klimeck

    This presentation demonstrates the importance of long-range strain in quantum dots Numerical analysis of the importance of the buffer around the central quantum dot - local band edges –...

    http://nanohub.org/resources/9270

  8. Nanoelectronic Modeling Lecture 29: Introduction to the NEMO3D Tool

    04 Aug 2010 | Online Presentations | Contributor(s): Gerhard Klimeck

    This presentation provides a very high level software overview of NEMO3D. The items discussed are: Modeling Agenda and Motivation Tight-Binding Motivation and basic formula...

    http://nanohub.org/resources/8599

  9. Nanoelectronic Modeling Lecture 28: Introduction to Quantum Dots and Modeling Needs/Requirements

    20 Jul 2010 | Online Presentations | Contributor(s): Gerhard Klimeck

    This presentation provides a very high level software overview of NEMO1D. Learning Objectives: This lecture provides a very high level overview of quantum dots. The main issues and...

    http://nanohub.org/resources/8598

  10. Nanotechnology Animation Gallery

    22 Apr 2010 | Teaching Materials | Contributor(s): Saumitra Raj Mehrotra, Gerhard Klimeck

    Animations and visualization are generated with various nanoHUB.org tools to enable insight into nanotechnology and nanoscience. Click on image for detailed description and larger image download....

    http://nanohub.org/resources/8882

  11. Analytically how to find the energy states for an ellipsoidal Quantum Dot?

    Closed | Responses: 0

    http://nanohub.org/answers/question/521

  12. 3D wavefunctions

    12 Apr 2010 | Animations | Contributor(s): Saumitra Raj Mehrotra, Gerhard Klimeck

    In quantum mechanics the time-independent Schrodinger's equation can be solved for eigenfunctions (also called eigenstates or wave-functions) and corresponding eigenenergies (or energy levels) for...

    http://nanohub.org/resources/8805

  13. Illinois ABE 446 Lecture 3: Quantum Dots and Polymers

    11 Feb 2010 | Teaching Materials | Contributor(s): Kaustubh Bhalerao

    NCN@illinois

    http://nanohub.org/resources/8422

  14. Nanoelectronic Modeling: Exercises 1-3 - Barrier Structures, RTDs, and Quantum Dots

    27 Jan 2010 | Online Presentations | Contributor(s): Gerhard Klimeck

    Exercises: Barrier Structures Uses: Piece-Wise Constant Potential Barrier Tool Resonant Tunneling Diodes Uses: Resonant Tunneling Diode Simulation with NEGF • Hartree calculation •...

    http://nanohub.org/resources/8259

  15. Nanoelectronic Modeling: From Quantum Mechanics and Atoms to Realistic Devices

    25 Jan 2010 | Courses | Contributor(s): Gerhard Klimeck

    The goal of this series of lectures is to explain the critical concepts in the understanding of the state-of-the-art modeling of nanoelectronic devices such as resonant tunneling diodes, quantum...

    http://nanohub.org/resources/8086

  16. Takuya Noguchi

    http://nanohub.org/members/39457

  17. NEMO3D

    For now this page is a rather empty place holder for references on nanoHUB to the NEMO3D tool. There is a more complete NEMO3D web page that is maintained by the Nanoelectronic Modeling Group of...

    http://nanohub.org/wiki/NEMO3D

  18. Quantum Dot Lab Demonstration: Pyramidal Qdots

    11 Jun 2009 | Animations | Contributor(s): Gerhard Klimeck, Benjamin P Haley

    This video shows the simulation and analysis of a pyramid-shaped quantum dot using Quantum Dot Lab. Several powerful analytic features of this tool are demonstrated.

    http://nanohub.org/resources/6845

  19. Thermoelectric Power Factor Calculator for Nanocrystalline Composites

    21 Oct 2008 | Tools | Contributor(s): Terence Musho, Greg Walker

    Quantum Simulation of the Seebeck Coefficient and Electrical Conductivity in a 2D Nanocrystalline Composite Structure using Non-Equilibrium Green's Functions

    http://nanohub.org/resources/nccpf

  20. How do I interpret CV measurements of self-assembled quantum dot stacks?

    Closed | Responses: 0

    I’ve been reading papers where CV measurements of stacks of self-assembled quantum dots are used to characterise the energy levels in the dots. I am at a loss to interpret the plots. For...

    http://nanohub.org/answers/question/129