Please help us continue to improve nanoHUB operation and service by completing our survey - http://bit.ly/nH-survey14. Thank you - we appreciate your time. close

Support

Support Options

Submit a Support Ticket

 

Tags: quantum dots

Description

Quantum dots have a small, countable number of electrons confined in a small space. Their electrons are confined by having a tiny bit of conducting material surrounded on all sides by an insulating material. If the insulator is strong enough, and the conducting volume is small enough, then the confinement will force the electrons to have discrete (quantized) energy levels. These energy levels can influence the device behavior at a macroscopic scale, showing up, for example, as peaks in the conductance. Because of the quantized energy levels, quantum dots have been called "artificial atoms." Neighboring, weakly-coupled quantum dots have been called "artificial molecules."

Learn more about quantum dots from the many resources on this site, listed below. More information on Quantum dots can be found here.

All Categories (41-60 of 189)

  1. Takuya Noguchi

    http://nanohub.org/members/39457

  2. NEMO3D

    For now this page is a rather empty place holder for references on nanoHUB to the NEMO3D tool. There is a more complete NEMO3D web page that is maintained by the Nanoelectronic Modeling Group of...

    http://nanohub.org/wiki/NEMO3D

  3. Quantum Dot Lab Demonstration: Pyramidal Qdots

    11 Jun 2009 | Animations | Contributor(s): Gerhard Klimeck, Benjamin P Haley

    This video shows the simulation and analysis of a pyramid-shaped quantum dot using Quantum Dot Lab. Several powerful analytic features of this tool are demonstrated.

    http://nanohub.org/resources/6845

  4. Thermoelectric Power Factor Calculator for Nanocrystalline Composites

    18 Oct 2008 | Tools | Contributor(s): Terence Musho, Greg Walker

    Quantum Simulation of the Seebeck Coefficient and Electrical Conductivity in a 2D Nanocrystalline Composite Structure using Non-Equilibrium Green's Functions

    http://nanohub.org/resources/nccpf

  5. How do I interpret CV measurements of self-assembled quantum dot stacks?

    Closed | Responses: 0

    I’ve been reading papers where CV measurements of stacks of self-assembled quantum dots are used to characterise the energy levels in the dots. I am at a loss to interpret the plots. For...

    http://nanohub.org/answers/question/129

  6. Nanobiotechnology – a different perspective

    22 Jul 2008 | Online Presentations | Contributor(s): Murali Sastry

    The study of the synthesis, exotic properties, assembly/packaging and potential commercial application of nanomaterials is an extremely important topic of research that is expected to have...

    http://nanohub.org/resources/4807

  7. Nano Carbon: From ballistic transistors to atomic drumheads

    14 May 2008 | Online Presentations | Contributor(s): Paul L. McEuen

    Carbon takes many forms, from precious diamonds to lowly graphite. Surprisingly, it is the latter that is the most prized by nano physicists. Graphene, a single layer of graphite, can serve as an...

    http://nanohub.org/resources/4398

  8. Bionanotechnology: a different perspective

    30 Apr 2008 | Online Presentations | Contributor(s): Murali Sastry

    The study of the synthesis, exotic properties, assembly/packaging and potential commercial application of nanomaterials is an extremely important topic of research that is expected to have...

    http://nanohub.org/resources/4402

  9. Introduction to Coulomb Blockade Lab

    31 Mar 2008 | Teaching Materials | Contributor(s): Bhaskaran Muralidharan, Xufeng Wang, Gerhard Klimeck

    The tutorial is based on the Coulomb Blockade Lab available online at Coulomb Blockade Lab. Students are introduced to the concepts of level broadening and charging energies in artificial atoms...

    http://nanohub.org/resources/4231

  10. Coulomb Blockade Simulation

    05 Jul 2006 | Tools | Contributor(s): Xufeng Wang, Bhaskaran Muralidharan, Gerhard Klimeck

    Simulate Coulomb Blockade through Many-Body Calculations in a single and double quantum dot system

    http://nanohub.org/resources/coulombsim

  11. Introduction to Quantum Dot Lab

    31 Mar 2008 | Online Presentations | Contributor(s): Sunhee Lee, Hoon Ryu, Gerhard Klimeck

    The nanoHUB tool "Quantum Dot Lab" allows users to compute the quantum mechanical "particle in a box" problem for a variety of different confinement shapes, such as boxes, ellipsoids, disks, and...

    http://nanohub.org/resources/4194

  12. Quantum Dot Spectra, Absorption, and State Symmetry: an Exercise

    30 Mar 2008 | Teaching Materials | Contributor(s): Gerhard Klimeck

    The tutorial questions based on the Quantum Dot Lab v1.0 available online at Quantum Dot Lab. Students are asked to explore the various different quantum dot shapes, optimize the intra-band...

    http://nanohub.org/resources/4203

  13. Nanoelectronic Modeling: Multimillion Atom Simulations, Transport, and HPC Scaling to 23,000 Processors

    07 Mar 2008 | Online Presentations | Contributor(s): Gerhard Klimeck

    Future field effect transistors will be on the same length scales as “esoteric” devices such as quantum dots, nanowires, ultra-scaled quantum wells, and resonant tunneling diodes. In those...

    http://nanohub.org/resources/3988

  14. MCW07 Physics of Contact Induced Current Asymmetry in Transport Through Molecules

    25 Feb 2008 | Online Presentations | Contributor(s): Bhaskaran Muralidharan, Owen D. Miller, Neeti Kapur, Avik Ghosh, Supriyo Datta

    We first outline the qualitatively different physics involved in the charging-induced current asymmetries in molecular conductors operating in the strongly coupled (weakly interacting)...

    http://nanohub.org/resources/3073

  15. Path Integral Monte Carlo

    13 Dec 2007 | Tools | Contributor(s): John Shumway, Matthew Gilbert

    Tool Description

    http://nanohub.org/resources/pimc

  16. Development of a Nanoelectronic 3-D (NEMO 3-D ) Simulator for Multimillion Atom Simulations and Its Application to Alloyed Quantum Dots

    14 Jan 2008 | Papers | Contributor(s): Gerhard Klimeck, Timothy Boykin

    Material layers with a thickness of a few nanometers are common-place in today’s semiconductor devices. Before long, device fabrication methods will reach a point at which the other two...

    http://nanohub.org/resources/3819

  17. Finite Size Scaling and Quantum Criticality

    02 Jan 2008 | Online Presentations | Contributor(s): Sabre Kais

    In statistical mechanics, the finite size scaling method provides a systematic way to extrapolate information about criticality obtained from a finite system to the thermodynamic limit. For...

    http://nanohub.org/resources/3526

  18. NanoElectronic MOdeling: NEMO

    20 Dec 2007 | Online Presentations | Contributor(s): Gerhard Klimeck

    This presentation was one of 13 presentations in the one-day forum, "Excellence in Computer Simulation," which brought together a broad set of experts to reflect on the future of computational...

    http://nanohub.org/resources/3707

  19. Engineering Nanomedical Systems

    16 Nov 2007 | Online Presentations | Contributor(s): James Leary

    This tutorial will cover general problems and approaches to the design of engineered nanomedical systems. An example to be covered is the engineering design of programmable multilayered...

    http://nanohub.org/resources/3539

  20. Engineering at the nanometer scale: Is it a new material or a new device?

    06 Nov 2007 | Online Presentations | Contributor(s): Gerhard Klimeck

    This seminar will overview NEMO 3D simulation capabilities and its deployment on the nanoHUB as well as an overview of the nanoHUB impact on the community.

    http://nanohub.org/resources/3504

nanoHUB.org, a resource for nanoscience and nanotechnology, is supported by the National Science Foundation and other funding agencies. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.