Tags: quantum dots

Description

Quantum dots have a small, countable number of electrons confined in a small space. Their electrons are confined by having a tiny bit of conducting material surrounded on all sides by an insulating material. If the insulator is strong enough, and the conducting volume is small enough, then the confinement will force the electrons to have discrete (quantized) energy levels. These energy levels can influence the device behavior at a macroscopic scale, showing up, for example, as peaks in the conductance. Because of the quantized energy levels, quantum dots have been called "artificial atoms." Neighboring, weakly-coupled quantum dots have been called "artificial molecules."

Learn more about quantum dots from the many resources on this site, listed below. More information on Quantum dots can be found here.

All Categories (61-80 of 112)

  1. Introduction to Coulomb Blockade Lab

    31 Mar 2008 | Teaching Materials | Contributor(s): Bhaskaran Muralidharan, Xufeng Wang, Gerhard Klimeck

    The tutorial is based on the Coulomb Blockade Lab available online at Coulomb Blockade Lab. Students are introduced to the concepts of level broadening and charging energies in artificial atoms...

    http://nanohub.org/resources/4231

  2. Coulomb Blockade Simulation

    31 Mar 2008 | Tools | Contributor(s): Xufeng Wang, Bhaskaran Muralidharan, Gerhard Klimeck

    Simulate Coulomb Blockade through Many-Body Calculations in a single and double quantum dot system

    http://nanohub.org/resources/coulombsim

  3. Introduction to Quantum Dot Lab

    31 Mar 2008 | Online Presentations | Contributor(s): Sunhee Lee, Hoon Ryu, Gerhard Klimeck

    The nanoHUB tool "Quantum Dot Lab" allows users to compute the quantum mechanical "particle in a box" problem for a variety of different confinement shapes, such as boxes, ellipsoids, disks, and...

    http://nanohub.org/resources/4194

  4. Quantum Dot Spectra, Absorption, and State Symmetry: an Exercise

    30 Mar 2008 | Teaching Materials | Contributor(s): Gerhard Klimeck

    The tutorial questions based on the Quantum Dot Lab v1.0 available online at Quantum Dot Lab. Students are asked to explore the various different quantum dot shapes, optimize the intra-band...

    http://nanohub.org/resources/4203

  5. Nanoelectronic Modeling: Multimillion Atom Simulations, Transport, and HPC Scaling to 23,000 Processors

    07 Mar 2008 | Online Presentations | Contributor(s): Gerhard Klimeck

    Future field effect transistors will be on the same length scales as “esoteric” devices such as quantum dots, nanowires, ultra-scaled quantum wells, and resonant tunneling diodes. In those...

    http://nanohub.org/resources/3988

  6. MCW07 Physics of Contact Induced Current Asymmetry in Transport Through Molecules

    25 Feb 2008 | Online Presentations | Contributor(s): Bhaskaran Muralidharan, Owen D. Miller, Neeti Kapur, Avik Ghosh, Supriyo Datta

    We first outline the qualitatively different physics involved in the charging-induced current asymmetries in molecular conductors operating in the strongly coupled (weakly interacting)...

    http://nanohub.org/resources/3073

  7. Path Integral Monte Carlo

    15 Jan 2008 | Tools | Contributor(s): John Shumway, Matthew Gilbert

    Tool Description

    http://nanohub.org/resources/pimc

  8. Development of a Nanoelectronic 3-D (NEMO 3-D ) Simulator for Multimillion Atom Simulations and Its Application to Alloyed Quantum Dots

    14 Jan 2008 | Papers | Contributor(s): Gerhard Klimeck, Timothy Boykin

    Material layers with a thickness of a few nanometers are common-place in today’s semiconductor devices. Before long, device fabrication methods will reach a point at which the other two...

    http://nanohub.org/resources/3819

  9. Finite Size Scaling and Quantum Criticality

    02 Jan 2008 | Online Presentations | Contributor(s): Sabre Kais

    In statistical mechanics, the finite size scaling method provides a systematic way to extrapolate information about criticality obtained from a finite system to the thermodynamic limit. For...

    http://nanohub.org/resources/3526

  10. NanoElectronic MOdeling: NEMO

    20 Dec 2007 | Online Presentations | Contributor(s): Gerhard Klimeck

    This presentation was one of 13 presentations in the one-day forum, "Excellence in Computer Simulation," which brought together a broad set of experts to reflect on the future of computational...

    http://nanohub.org/resources/3707

  11. Engineering Nanomedical Systems

    16 Nov 2007 | Online Presentations | Contributor(s): James Leary

    This tutorial will cover general problems and approaches to the design of engineered nanomedical systems. An example to be covered is the engineering design of programmable multilayered...

    http://nanohub.org/resources/3539

  12. Engineering at the nanometer scale: Is it a new material or a new device?

    06 Nov 2007 | Online Presentations | Contributor(s): Gerhard Klimeck

    This seminar will overview NEMO 3D simulation capabilities and its deployment on the nanoHUB as well as an overview of the nanoHUB impact on the community.

    http://nanohub.org/resources/3504

  13. KIST/PU Multi-Component, Multi-Functional Nanomedical Systems for Drug/Gene Delivery

    23 Oct 2007 | Online Presentations | Contributor(s): James Leary

    In this brief paper we describe some of our recent efforts to construct multi-component, multi-functional nanomedical systems for delivery of therapeutic genes. We first describe the general...

    http://nanohub.org/resources/3380

  14. MCW07 Simple Models for Molecular Transport Junctions

    13 Sep 2007 | Online Presentations | Contributor(s): Misha Galperin, Abraham Nitzan, Mark A. Ratner

    We review our recent research on role of interactions in molecular transport junctions. We consider simple models within nonequilibrium Green function approach (NEGF) in steady-state regime.

    http://nanohub.org/resources/3072

  15. Micro-scaled Biochips with Optically Active Surfaces for Near and Far-field Analysis of Cellular Fluorescence

    31 Aug 2007 | Online Presentations | Contributor(s): Huw Summers

    The integration of thin (< 100 nm) metal films with micro-scale optical waveguides provides a route to controlled spatial excitation of cellular fluorescence within a biochip...

    http://nanohub.org/resources/3121

  16. Quantum Dot Lab Learning Module: An Introduction

    02 Jul 2007 | Series | Contributor(s): James K Fodor, Jing Guo

    THIS MATERIAL CORRESPONDS TO AN OLDER VERSION OF QUANTUM DOT LAB THAN CURRENTLY AVAILABLE ON nanoHUB.org.

    http://nanohub.org/resources/2846

  17. Quantum dots

    Open | Responses: 1

    What I want to do is building an aluminum quantum dot coupled to aluminum leads to observe Coulomb Blockade. To form the tunnel barriers we oxidize the Al in a plasma without any detailed...

    http://nanohub.org/answers/question/2

  18. Quantum Dot - synthesis routes

    03 Apr 2007 | Downloads | Contributor(s): Saurabh Madaan

    A brief survey of synthesis routes of quantum dots, with more emphasis on epitaxial and colloidal approaches.

    http://nanohub.org/resources/2520

  19. What Can the TEM Tell You About Your Nanomaterial?

    26 Feb 2007 | Online Presentations | Contributor(s): Eric Stach

    In this tutorial, I will present a brief overview of the ways that transmission electron microscopy can be used to characterize nanoscale materials. This tutorial will emphasize what TEM does...

    http://nanohub.org/resources/2359

  20. Atomistic Alloy Disorder in Nanostructures

    26 Feb 2007 | Online Presentations | Contributor(s): Gerhard Klimeck

    Electronic structure and quantum transport simulations are typically performed in perfectly ordered semiconductor structures. Bands and modes are defined resulting in quantized conduction and...

    http://nanohub.org/resources/2350