Support

Support Options

Submit a Support Ticket

 

Tags: quantum dots

Description

Quantum dots have a small, countable number of electrons confined in a small space. Their electrons are confined by having a tiny bit of conducting material surrounded on all sides by an insulating material. If the insulator is strong enough, and the conducting volume is small enough, then the confinement will force the electrons to have discrete (quantized) energy levels. These energy levels can influence the device behavior at a macroscopic scale, showing up, for example, as peaks in the conductance. Because of the quantized energy levels, quantum dots have been called "artificial atoms." Neighboring, weakly-coupled quantum dots have been called "artificial molecules."

Learn more about quantum dots from the many resources on this site, listed below. More information on Quantum dots can be found here.

All Categories (81-100 of 189)

  1. Active Photonic Nanomaterials: From Random to Periodic Structures

    06 Feb 2006 | Online Presentations | Contributor(s): Hui Cao

    Active photonic nanomaterials, which have high gain or large nonlinearity, are essential to the development of nanophotonic devices and circuits. In this talk, I will provide a review of our...

    http://nanohub.org/resources/1012

  2. Quantum-dot Cellular Automata (QCA) - Memory Cells

    03 Feb 2006 | Animations | Contributor(s): John C. Bean

    Scientists and engineers are looking for completely different ways of storing and analyzing information. Quantum-dot Cellular Automata are one possible solution. In computers of the future,...

    http://nanohub.org/resources/1006

  3. Quantum-dot Cellular Automata (QCA) - Logic Gates

    03 Feb 2006 | Animations | Contributor(s): John C. Bean

    An earlier animation described how "Quantum-dot Cellular Automata" (QCAs) could serve as memory cells and wires. This animation contnues the story by describing how QCAs can be made into MAJORITY,...

    http://nanohub.org/resources/1005

  4. Designing Nanocomposite Materials for Solid-State Energy Conversion

    10 Nov 2005 | Online Presentations | Contributor(s): Timothy D. Sands

    New materials will be necessary to break through today's performance envelopes for solid-state energy conversion devices ranging from LED-based solid-state white lamps to thermoelectric...

    http://nanohub.org/resources/832

  5. VolQD: Graphics Hardware Accelerated Interactive Visual Analytics of Multi-million Atom Nanoelectronics Simulations

    13 Dec 2005 | Online Presentations | Contributor(s): Wei Qiao

    In this work we present a hardware-accelerated direct volume rendering system for visualizing multivariate wave functions in semiconducting quantum dot (QD) simulations. The simulation...

    http://nanohub.org/resources/789

  6. Atomic Force Microscopy

    01 Dec 2005 | Online Presentations | Contributor(s): Arvind Raman

    Atomic Force Microscopy (AFM) is an indispensible tool in nano science for the fabrication, metrology, manipulation, and property characterization of nanostructures. This tutorial reviews some of...

    http://nanohub.org/resources/520

  7. Quantum Dot Lab

    12 Nov 2005 | Tools | Contributor(s): Prasad Sarangapani, Daniel F Mejia, Andrew Roché, Lars Bjaalie, Sebastian Steiger, David Ebert, Matteo Mannino, Hong-Hyun Park, Tillmann Christoph Kubis, James Fonseca, Michael Povolotskyi, Michael McLennan, Gerhard Klimeck

    Compute the eigenstates of a particle in a box of various shapes including domes, pyramids and multilayer structures.

    http://nanohub.org/resources/qdot

  8. Designing Nanocomposite Thermoelectric Materials

    08 Nov 2005 | Online Presentations | Contributor(s): Timothy D. Sands

    This tutorial reviews recent strategies for designing high-ZT nanostructured materials, including superlattices, embedded quantum dots, and nanowire composites. The tutorial highlights the...

    http://nanohub.org/resources/383

  9. Bandstructure in Nanoelectronics

    01 Nov 2005 | Online Presentations | Contributor(s): Gerhard Klimeck

    This presentation will highlight, for nanoelectronic device examples, how the effective mass approximation breaks down and why the quantum mechanical nature of the atomically resolved material...

    http://nanohub.org/resources/381

  10. Nanoparticle Synthesis and Assembly for Biological Sensing

    25 Oct 2005 | Online Presentations | Contributor(s): Gil Lee

    Nanoparticles have unique physical and chemical properties that make them very useful for biological and chemical sensing. For example, colloidal gold has been used as an optical transducer...

    http://nanohub.org/resources/386

  11. Semiconductor Interfaces at the Nanoscale

    17 Oct 2005 | Online Presentations | Contributor(s): David Janes

    The trend in downscaling of electronic devices and the need to add functionalities such as sensing and nonvolatile memory to existing circuitry dictate that new approaches be developed for device...

    http://nanohub.org/resources/196

  12. Plasmonic Nanophotonics: Coupling Light to Nanostructure via Plasmons

    03 Oct 2005 | Online Presentations | Contributor(s): Vladimir M. Shalaev

    The photon is the ultimate unit of information because it packages data in a signal of zero mass and has unmatched speed. The power of light is driving the photonicrevolution, and information...

    http://nanohub.org/resources/194

  13. Parallel Computing for Realistic Nanoelectronic Simulations

    12 Sep 2005 | Online Presentations | Contributor(s): Gerhard Klimeck

    Typical modeling and simulation efforts directed towards the understanding of electron transport at the nanometer scale utilize single workstations as computational engines. Growing understanding...

    http://nanohub.org/resources/191

  14. Quantum Dots

    21 Jul 2005 | Online Presentations | Contributor(s): Gerhard Klimeck

    Quantum Dots are man-made artificial atoms that confine electrons to a small space. As such, they have atomic-like behavior and enable the study of quantum mechanical effects on a length scale...

    http://nanohub.org/resources/189

  15. Nanomaterials: Quantum Dots, Nanowires and Nanotubes

    15 Jul 2005 | Online Presentations | Contributor(s): Timothy D. Sands

    What is a quantum dot? What is a nanowire? What is a nanotube? Why are these interesting and what are their potential applications? How are they made? This presentation is intended to begin to...

    http://nanohub.org/resources/376

  16. HPC and Visualization for multimillion atom simulations

    21 Jun 2005 | Online Presentations | Contributor(s): Gerhard Klimeck

    This presentation gives an overview of the HPC and visulaization efforts involving multi-million atom simulations for the June 2005 NSF site visit to the Network for Computational Nanotechnology.

    http://nanohub.org/resources/187

  17. 2005 Molecular Conduction and Sensors Workshop

    27 Jul 2005 | Workshops

    This is the 3rd in a series of annual workshops on Molecular Conduction. The prior workshops have been at Purdue University, W. Lafayette, IN (2003) and Nothwestern University, Evanston, IL...

    http://nanohub.org/resources/140

  18. SEQUAL 2.1 Source Code Download

    09 Mar 2005 | Downloads | Contributor(s): Michael McLennan

    SEQUAL 2.1 is a device simulation program that computes Semiconductor Electrostatics by Quantum Analysis. Given a device, SEQUAL will compute the electron density and the current density using a...

    http://nanohub.org/resources/104

  19. Single Electron Switching with Nano-Electromechanical Systems and Applications in Ion Channel Transport

    01 Nov 2004 | Online Presentations | Contributor(s): Robert Blick

    Taking classes in physics always starts with Newtonian mechanics. In reducing the size of the objects considered however the transition into the quantum mechanical regime has to occur. The...

    http://nanohub.org/resources/173

  20. Visualization of and Educational Tool for Quantum Dots

    15 Aug 2004 | Presentation Materials | Contributor(s): Aaron Christensen, Adrian Rios

    Quantum dots (QDs) are confined structures made of metals and semiconductors that are capable of containing free electrons.The ability to visualize these small devices is advantageous in...

    http://nanohub.org/resources/743

nanoHUB.org, a resource for nanoscience and nanotechnology, is supported by the National Science Foundation and other funding agencies. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.