Tags: quantum dots

Description

Quantum dots have a small, countable number of electrons confined in a small space. Their electrons are confined by having a tiny bit of conducting material surrounded on all sides by an insulating material. If the insulator is strong enough, and the conducting volume is small enough, then the confinement will force the electrons to have discrete (quantized) energy levels. These energy levels can influence the device behavior at a macroscopic scale, showing up, for example, as peaks in the conductance. Because of the quantized energy levels, quantum dots have been called "artificial atoms." Neighboring, weakly-coupled quantum dots have been called "artificial molecules."

Learn more about quantum dots from the many resources on this site, listed below. More information on Quantum dots can be found here.

All Categories (81-100 of 119)

  1. MCW07 Simple Models for Molecular Transport Junctions

    13 Sep 2007 | | Contributor(s):: , Abraham Nitzan, Mark Ratner

    We review our recent research on role of interactions in molecular transport junctions. We consider simple models within nonequilibrium Green function approach (NEGF) in steady-state regime.

  2. Micro-scaled Biochips with Optically Active Surfaces for Near and Far-field Analysis of Cellular Fluorescence

    31 Aug 2007 | | Contributor(s):: Huw Summers

    The integration of thin (< 100 nm) metal films with micro-scaleoptical waveguides provides a route to controlled spatialexcitation of cellular fluorescence within a biochip platform.Surface bound electron-plasma oscillations (surface plasmon waves)interact with photons to produce an...

  3. Quantum Dot Lab Learning Module: An Introduction

    02 Jul 2007 | | Contributor(s):: James K Fodor, Jing Guo

    THIS MATERIAL CORRESPONDS TO AN OLDER VERSION OF QUANTUM DOT LAB THAN CURRENTLY AVAILABLE ON nanoHUB.org.

  4. Quantum dots

    Open | Responses: 1

    What I want to do is building an aluminum quantum dot coupled to aluminum leads to observe Coulomb Blockade. To form the tunnel barriers we oxidize the Al in a plasma without any detailed...

    http://nanohub.org/answers/question/2

  5. Quantum Dot - synthesis routes

    03 Apr 2007 | | Contributor(s):: Saurabh Madaan

    A brief survey of synthesis routes of quantum dots, with more emphasis on epitaxial and colloidal approaches.

  6. What Can the TEM Tell You About Your Nanomaterial?

    26 Feb 2007 | | Contributor(s):: Eric Stach

    In this tutorial, I will present a brief overview of the ways that transmission electron microscopy can be used to characterize nanoscale materials. This tutorial will emphasize what TEM does well, as well where difficulties arise. In particular, I will discuss in an overview manner how...

  7. Atomistic Alloy Disorder in Nanostructures

    26 Feb 2007 | | Contributor(s):: Gerhard Klimeck

    Electronic structure and quantum transport simulations are typically performed in perfectly ordered semiconductor structures. Bands and modes are defined resulting in quantized conduction and discrete states. But what if the material is fundamentally disordered? What if the disorder is at the...

  8. Surprises on the nanoscale: Plasmonic waves that travel backward and spin birefringence without magnetic fields

    08 Jan 2007 |

    As nanonphotonics and nanoelectronics are pushed down towards the molecular scale, interesting effects emerge. We discuss how birefringence (different propagation of two polarizations) is manifested and could be useful in the future for two systems: coherent plasmonic transport of near-field...

  9. Nanoparticles in Biology and Materials: Engineering the Interface through Synthesis

    29 Jan 2007 |

    Monolayer-protected nanoparticles provide versatile tools for nanotechnology. In our research, we use these nanoparticles as building blocks for the creation of functional magnetic and electronic nanocomposite materials. Simultaneously, we are using these particles as scaffolds for biomolecular...

  10. Nanotechnology and Occupational Safety and Health: What are the Issues, What do we know, and What is NIOSH Doing

    21 Nov 2006 | | Contributor(s):: Chuck L Geraci

    Nanotechnology and Occupational Safety and Health: What are the Issues, What do we know, and What is NIOSH Doing

  11. NEMO 3D: Intel optimizations and Multiple Quantum Dot Simulations

    03 Aug 2006 | | Contributor(s):: Anish Dhanekula, Gerhard Klimeck

    NEMO-3D is a nanoelectronic modeling tool that analyzes the electronic structure of nanoscopic devices. Nanoelectronic devices such as Quantum Dots (QDs) can contain millions of atoms,. Therefore, simulating their electronic structure, can take up to several days. In order to simulate and...

  12. A MATLAB code for Hartree Fock calculation of H-H ground state bondlength and energy using STO-4G

    08 Aug 2006 | | Contributor(s):: Amritanshu Palaria

    Hartree Fock (HF) theory is one of the basic theories underlying the current understanding of the electronic structure of materials. It is a simple non-relativistic treatment of many electron system that accounts for the antisymmetric (fermion) nature of electronic wavefunction but does not...

  13. Quantum Transport: Atom to Transistor (Spring 2004)

    23 May 2006 | | Contributor(s):: Supriyo Datta

    Spring 2004 Please Note: A newer version of this course is now available and we would greatly appreciate your feedback regarding the new format and contents. Course Information Website The development of "nanotechnology" has made it possible to engineer materials and devices...

  14. Nanotubes and Nanowires: One-dimensional Materials

    17 Jul 2006 |

    What is a nanowire? What is a nanotube? Why are they interesting and what are their potential applications? How are they made? This presentation is intended to begin to answer these questions while introducing some fundamental concepts such as wave-particle duality, quantum confinement, the...

  15. Engineering Nanomedical Systems

    06 Mar 2006 | | Contributor(s):: James Leary

    This tutorial discusses general problems and approaches to the design of engineered nanomedical systems. One example given is the engineering design of programmable multilayered nanoparticles (PMNP) to control a multi-sequence process of targeting to rare cells in-vivo, re-targeting to...

  16. Molecular Transport Structures: Elastic Scattering, Vibronic Effects and Beyond

    13 Feb 2006 | | Contributor(s):: Mark Ratner, Abraham Nitzan,

    Current experimental efforts are clarifying quite beautifully the nature of charge transport in so-called molecular junctions, in which a single molecule provides the channel for current flow between two electrodes. The theoretical modeling of such structures is challenging, because of the...

  17. A Gentle Introduction to Nanotechnology and Nanoscience

    13 Feb 2006 | | Contributor(s):: Mark Ratner

    While the Greek root nano just means dwarf, the nanoscale has become a giant focus of contemporary science and technology. We will examine the fundamental issues underlying the excitement involved in nanoscale research - what, why and how. Specific topics include assembly, properties,...

  18. Active Photonic Nanomaterials: From Random to Periodic Structures

    06 Feb 2006 | | Contributor(s):: Hui Cao

    Active photonic nanomaterials, which have high gain or large nonlinearity, are essential to the development of nanophotonic devices and circuits. In this talk, I will provide a review of our recent research activities related to the fabrication of active photonic nanomaterials and the...

  19. Quantum-dot Cellular Automata (QCA) - Memory Cells

    03 Feb 2006 |

    Scientists and engineers are looking for completely different ways of storing and analyzing information. Quantum-dot Cellular Automata are one possible solution. In computers of the future, transistors may be replaced by assemblies of quantum dots called Quantum-dot Cellular Automata (QCAs).This...

  20. Quantum-dot Cellular Automata (QCA) - Logic Gates

    03 Feb 2006 |

    An earlier animation described how "Quantum-dot Cellular Automata" (QCAs) could serve as memory cells and wires. This animation contnues the story by describing how QCAs can be made into MAJORITY, OR, AND, and INVERTER logic gates.