
Quantitative Modeling and Simulation of Quantum Dots
18 Apr 2011  Presentation Materials  Contributor(s): Muhammad Usman
Quantum dots grown by selfassembly process are typically constructed by 50,000 to 5,000,000 structural atoms which confine a small, countable number of extra electrons or holes in a space that is...
http://nanohub.org/resources/9332

Tutorial 4b: Introduction to the NEMO3D Tool  Electronic Structure and Transport in 3D
29 Mar 2011  Online Presentations  Contributor(s): Gerhard Klimeck
Electronic Structure and Transport in 3D  Quantum Dots, Nanowires and UltraThin Body Transistors
http://nanohub.org/resources/11049

Quantum Dot Wave Function (Quantum Dot Lab)
02 Feb 2011  Animations  Contributor(s): Gerhard Klimeck, David S. Ebert, Wei Qiao
Electron density of an artificial atom. The animation sequence shows various electronic states in an Indium Arsenide (InAs)/Gallium Arsenide (GaAs) selfassembled quantum dot.
http://nanohub.org/resources/10751

SelfAssembled Quantum Dot Structure (pyramid)
02 Feb 2011  Animations  Contributor(s): Gerhard Klimeck, Insoo Woo, Muhammad Usman, David S. Ebert
Pyramidal InAs Quantum dot. The quantum dot is 27 atomic monolayers wide at the base and 15 atomic monolayers tall.
http://nanohub.org/resources/10730

Quantum Dot Wave Function (still image)
31 Jan 2011  Animations  Contributor(s): Gerhard Klimeck, David S. Ebert, Wei Qiao
Electron density of an artificial atom. The image shown displays the excited electron state in an Indium Arsenide (InAs) / Gallium Arsenide (GaAs) selfassembled quantum dot.
http://nanohub.org/resources/10692

SelfAssembled Quantum Dot Wave Structure
31 Jan 2011  Animations  Contributor(s): Gerhard Klimeck, Insoo Woo, Muhammad Usman, David S. Ebert
A 20nm wide and 5nm high dome shaped InAs quantum dot grown on GaAs and embedded in InAlAs is visualized.
http://nanohub.org/resources/10689

Modeling the quantum dot growth in the continuum approximation
12 Jan 2011  Papers  Contributor(s): Peter Cendula
Quantum dots can grow spontaneously during molecular beam epitaxy of
two materials with different lattice parameters, StranskiKrastanow growth mode.
We study a mathematical model based on the...
http://nanohub.org/resources/10365

Atomistic Modeling and Simulation Tools for Nanoelectronics and their Deployment on nanoHUB.org
16 Dec 2010  Online Presentations  Contributor(s): Gerhard Klimeck
At the nanometer scale the concepts of device and material meet and a new device is a new material and vice versa. While atomistic device representations are novel to device physicists, the...
http://nanohub.org/resources/10199

Test for Quantum Dot Lab tool
09 Nov 2010  Teaching Materials  Contributor(s): SungGeun Kim, Saumitra Raj Mehrotra
This test is aimed at selflearning students or instructors who may be engaged in teaching classes related to the quantum dot lab tool.
The level of this test should not be difficult for a...
http://nanohub.org/resources/9968

Nanoelectronic Modeling Lecture 34: Alloy Disorder in Quantum Dots
05 Aug 2010  Online Presentations  Contributor(s): Gerhard Klimeck, Timothy Boykin, Chris Bowen
This presentation discusses the consequences of Alloy Disorder in strained InGaAs Quantum Dots
Reminder of the origin of bandstructure and bandstructure engineering
What happens when...
http://nanohub.org/resources/9279

Nanoelectronic Modeling Lecture 32: Strain Layer Design through Quantum Dot TCAD
04 Aug 2010  Online Presentations  Contributor(s): Gerhard Klimeck, Muhammad Usman
This presentation demonstrates the utilization of NEMO3D to understand complex experimental data of embedded InAs quantum dots that are selectively overgrown with a strain reducing InGaAs layer....
http://nanohub.org/resources/9272

Nanoelectronic Modeling Lecture 31a: LongRange Strain in InGaAs Quantum Dots
04 Aug 2010  Online Presentations  Contributor(s): Gerhard Klimeck
This presentation demonstrates the importance of longrange strain in quantum dots
Numerical analysis of the importance of the buffer around the central quantum dot  local band edges –...
http://nanohub.org/resources/9270

Nanoelectronic Modeling Lecture 29: Introduction to the NEMO3D Tool
04 Aug 2010  Online Presentations  Contributor(s): Gerhard Klimeck
This presentation provides a very high level software overview of NEMO3D. The items discussed are:
Modeling Agenda and Motivation
TightBinding Motivation and basic formula...
http://nanohub.org/resources/8599

Nanoelectronic Modeling Lecture 28: Introduction to Quantum Dots and Modeling Needs/Requirements
20 Jul 2010  Online Presentations  Contributor(s): Gerhard Klimeck
This presentation provides a very high level software overview of NEMO1D.
Learning Objectives:
This lecture provides a very high level overview of quantum dots. The main issues and...
http://nanohub.org/resources/8598

Nanotechnology Animation Gallery
22 Apr 2010  Teaching Materials  Contributor(s): Saumitra Raj Mehrotra, Gerhard Klimeck
Animations and visualization are generated with various nanoHUB.org tools to enable insight into nanotechnology and nanoscience. Click on image for detailed description and larger image download....
http://nanohub.org/resources/8882

Analytically how to find the energy states for an ellipsoidal Quantum Dot?
Closed  Responses: 0
http://nanohub.org/answers/question/521

3D wavefunctions
12 Apr 2010  Animations  Contributor(s): Saumitra Raj Mehrotra, Gerhard Klimeck
In quantum mechanics the timeindependent Schrodinger's equation can be solved for eigenfunctions (also called eigenstates or wavefunctions) and corresponding eigenenergies (or energy levels) for...
http://nanohub.org/resources/8805

Illinois ABE 446 Lecture 3: Quantum Dots and Polymers
11 Feb 2010  Teaching Materials  Contributor(s): Kaustubh Bhalerao
NCN@illinois
http://nanohub.org/resources/8422

Nanoelectronic Modeling: Exercises 13  Barrier Structures, RTDs, and Quantum Dots
27 Jan 2010  Online Presentations  Contributor(s): Gerhard Klimeck
Exercises:
Barrier Structures
Uses: PieceWise Constant Potential Barrier Tool
Resonant Tunneling Diodes
Uses: Resonant Tunneling Diode Simulation with NEGF
• Hartree calculation
•...
http://nanohub.org/resources/8259

Nanoelectronic Modeling: From Quantum Mechanics and Atoms to Realistic Devices
25 Jan 2010  Courses  Contributor(s): Gerhard Klimeck
The goal of this series of lectures is to explain the critical concepts in the understanding of the stateoftheart modeling of nanoelectronic devices such as resonant tunneling diodes, quantum...
http://nanohub.org/resources/8086