Tags: quantum mechanics

Description

Quantum mechanics (QM), also known as quantum physics or quantum theory, is a branch of physics providing a mathematical description of much of the dual particle-like and wave-like behavior and interactions of energy and matter. It departs from classical mechanics primarily at the atomic and subatomic scales, the so-called quantum realm. In advanced topics of QM, some of these behaviors are macroscopic and only emerge at very low or very high energies or temperatures.

Learn more about quantum dots from the many resources on this site, listed below. More information on Quantum mechanics can be found here.

Online Presentations (1-20 of 30)

  1. Application-driven Co-Design: Using Proxy Apps in the ASCR Materials Co-Design Center

    31 May 2012 | Online Presentations | Contributor(s): Jim Belak

    Computational materials science is performed with a suite of applications that span the quantum mechanics of interatomic bonding to the continuum mechanics of engineering problems and phenomenon...

    http://nanohub.org/resources/14149

  2. Bringing Quantum Mechanics to Life: From Schrödinger's Cat to Schrödinger's Microbe

    01 Nov 2016 | Online Presentations | Contributor(s): 156964

    In this talk, I will first give a brief introduction to basic concepts in quantum mechanics and the Schrödinger's cat thought experiment. I will then review developments in creating quantum...

    http://nanohub.org/resources/25179

  3. Development of the ReaxFF reactive force fields and applications to combustion, catalysis and material failure

    12 Sep 2011 | Online Presentations | Contributor(s): Adri van Duin

    This lecture will describe how the traditional, non-reactive FF-concept can be extended for application including reactive events by introducing bond order/bond distance concepts. Furthermore, it...

    http://nanohub.org/resources/11774

  4. Dynamics of Quantum Fluids: Path integral and Semiclassical Methods

    22 May 2008 | Online Presentations | Contributor(s): Nancy Makri

    The interplay of many-body nonlinear interactions and quantum mechanical effects such as zero-point motion or identical particle exchange symmetries lead to intriguing phenomena in low-temperature...

    http://nanohub.org/resources/4584

  5. E304 L3.1.2: Nanoscale Physics - Planck's Contribution to Quantum Mechanics

    26 Feb 2016 | Online Presentations

    http://nanohub.org/resources/23677

  6. E304 L5.2.1: Nanomechanics - Quantum Mechanics of Oscillation

    12 May 2016 | Online Presentations | Contributor(s): Elena Nicolescu Veety

    http://nanohub.org/resources/23870

  7. ECE 606 Lecture 2: Quantum Mechanics

    14 Sep 2012 | Online Presentations | Contributor(s): Gerhard Klimeck

    http://nanohub.org/resources/15123

  8. ECE 606 Lecture 3: Elements of Quantum Mechanics

    28 Jan 2009 | Online Presentations | Contributor(s): Muhammad A. Alam

    Outline: Why do we need quantum physics Quantum concepts Formulation of quantum mechanics Conclusions R. F. Pierret, "Advanced Semiconductor Fundamentals", Modular Series on Solid State...

    http://nanohub.org/resources/5754

  9. ECE 606 Lecture 4: Periodic Potentials Solutions of Schrödinger's Equation

    14 Sep 2012 | Online Presentations | Contributor(s): Gerhard Klimeck

    http://nanohub.org/resources/15133

  10. ECE 606 Lecture 4: Solution of Schrodinger Equation

    04 Feb 2009 | Online Presentations | Contributor(s): Muhammad A. Alam

    Outline: Time-independent Schrodinger Equation Analytical solution of toy problems Bound vs. tunneling states Conclusions Additional Notes: Numerical solution of Schrodinger Equation R....

    http://nanohub.org/resources/5756

  11. ECE 612 Lecture 4: Polysilicon Gates/QM Effects

    12 Sep 2008 | Online Presentations | Contributor(s): Mark Lundstrom

    Outline: 1) Review, 2) Workfunctionof poly gates, 3) CV with poly depletion, 4) Quantum mechanics and VT, 5) Quantum mechanics and C, 6) Summary.

    http://nanohub.org/resources/5364

  12. Electrons in Two Dimensions: Quantum Corrals and Semiconductor Microstructures

    04 Dec 2007 | Online Presentations | Contributor(s): Eric J. Heller

    The images generated by a scanning tunneling microscope are iconic. Some of the most famous are Don Eigler’s quantum corrals, which reveal not only the guest atoms on a surface but especially...

    http://nanohub.org/resources/3253

  13. Finite Size Scaling and Quantum Criticality

    09 May 2007 | Online Presentations | Contributor(s): Sabre Kais

    The study of quantum phase transitions, which are driven by quantum fluctuations as a consequence of Heisenberg's uncertainty principle, continues to be of increasing interest in the fields...

    http://nanohub.org/resources/2663

  14. Introduction to Quantum Dot Lab

    31 Mar 2008 | Online Presentations | Contributor(s): Sunhee Lee, Hoon Ryu, Gerhard Klimeck

    The nanoHUB tool "Quantum Dot Lab" allows users to compute the quantum mechanical "particle in a box" problem for a variety of different confinement shapes, such as boxes, ellipsoids, disks, and...

    http://nanohub.org/resources/4194

  15. Lecture 1: The Wigner Formulation of Quantum Mechanics

    18 Nov 2014 | Online Presentations | Contributor(s): Jean Michel D Sellier

    In this lecture, Dr. Sellier discusses the Wigner formulation of Quantum Mechanics which is based on the concept of quasi-distributions defined over the phase-space.

    http://nanohub.org/resources/21698

  16. Lecture 2: The Wigner Monte Carlo Method for Single-Body Quantum Systems

    18 Nov 2014 | Online Presentations | Contributor(s): Jean Michel D Sellier

    In this lecture, Dr. Sellier discusses the Wigner Monte Carlo method applied to single-body quantum systems.

    http://nanohub.org/resources/21699

  17. Lecture 3: The Wigner Monte Carlo Method for Density Functional Theory

    18 Nov 2014 | Online Presentations | Contributor(s): Jean Michel D Sellier

    In this lecture, Dr. Sellier discusses the Wigner Monte Carlo method in the framework of density functional theory (DFT).

    http://nanohub.org/resources/21700

  18. Lecture 4: The ab-initio Wigner Monte Carlo Method

    18 Nov 2014 | Online Presentations | Contributor(s): Jean Michel D Sellier

    In this lecture, Dr. Sellier discusses the ab-initio Wigner Monte Carlo method for the simulation of strongly correlated systems.

    http://nanohub.org/resources/21701

  19. Lecture 5: Systems of Identical Fermions in the Wigner Formulation of Quantum Mechanics

    18 Nov 2014 | Online Presentations | Contributor(s): Jean Michel D Sellier

    In this lecture, Dr. Sellier discusses about systems of indistinguishable Fermions in the Wigner formulation of quantum mechanics.

    http://nanohub.org/resources/21702

  20. ME 597 Lecture 1: Introduction to Basic Quantum Mechanics

    01 Sep 2009 | Online Presentations | Contributor(s): Ron Reifenberger

    Note: This lecture has been revised since its original presentation. Topics: Introduction to Basic Quantum Mechanics Energy States in Periodic Crystals Course is dual listed as...

    http://nanohub.org/resources/7321