Support

Support Options

Submit a Support Ticket

 

Tags: quantum mechanics

Description

Quantum mechanics (QM), also known as quantum physics or quantum theory, is a branch of physics providing a mathematical description of much of the dual particle-like and wave-like behavior and interactions of energy and matter. It departs from classical mechanics primarily at the atomic and subatomic scales, the so-called quantum realm. In advanced topics of QM, some of these behaviors are macroscopic and only emerge at very low or very high energies or temperatures.

Learn more about quantum dots from the many resources on this site, listed below. More information on Quantum mechanics can be found here.

All Categories (1-20 of 162)

  1. In the context of molecular dynamics, when does classical mechanics breakdown?

    Closed | Responses: 0

    In the context of molecular dynamics, when does classical mechanics breakdown? I viewed a lecture and wrote down some of the main points that the professor discussed. One of them was the...

    http://nanohub.org/answers/question/726

  2. Is there a good simulation of proton-neutron interaction?

    Closed | Responses: 0

    I have recently been exposed to several new material about quantum mechanics, and I am really interested in the atomic interaction and what new applications can be found out of it; so I was...

    http://nanohub.org/answers/question/467

  3. ABINIT: First-Time User Guide

    09 Jun 2009 | Teaching Materials | Contributor(s): Benjamin P Haley

    This first-time user guide provides an introduction to using ABINIT on nanoHUB. We include a very brief summary of Density Functional Theory along with a tour of the Rappture interface. We...

    http://nanohub.org/resources/6874

  4. Abishek Ramdas

    Masters student majoring in VLSI with interest in mathematical physics.

    http://nanohub.org/members/62582

  5. Akshay Balgarkashi

    http://nanohub.org/members/87270

  6. Alessandro Motta

    http://nanohub.org/members/53317

  7. Allan Maple Oliveira

    http://nanohub.org/members/57468

  8. Application-driven Co-Design: Using Proxy Apps in the ASCR Materials Co-Design Center

    31 May 2012 | Online Presentations | Contributor(s): Jim Belak

    Computational materials science is performed with a suite of applications that span the quantum mechanics of interatomic bonding to the continuum mechanics of engineering problems and phenomenon...

    http://nanohub.org/resources/14149

  9. Basics of Quantum Mechanics

    01 Jun 2010 | Teaching Materials | Contributor(s): Dragica Vasileska

    Classical vs. Quantum physics, particle-wave duality, postulates of quantum mechanics

    http://nanohub.org/resources/9101

  10. Baudilio Tejerina

    Since November 2004, Baudilio Tejerina manages the computer facilities of the Theory Group in the Department of Chemistry at Northwestern University. After receiving his PhD in Physical Chemistry...

    http://nanohub.org/members/8744

  11. Behzad Khezri

    http://nanohub.org/members/85918

  12. CNDO/INDO

    09 Oct 2007 | Tools | Contributor(s): Baudilio Tejerina, Jeff Reimers

    Semi-empirical Molecular Orbital calculations.

    http://nanohub.org/resources/CNDO

  13. Computational Nanoscience, Lecture 13: Introduction to Computational Quantum Mechanics

    30 Apr 2008 | Teaching Materials | Contributor(s): Jeffrey C Grossman, Elif Ertekin

    In this lecture we introduce the basic concepts that will be needed as we explore simulation approaches that describe the electronic structure of a system.

    http://nanohub.org/resources/4491

  14. Computational Nanoscience, Lecture 20: Quantum Monte Carlo, part I

    15 May 2008 | Teaching Materials | Contributor(s): Elif Ertekin, Jeffrey C Grossman

    This lecture provides and introduction to Quantum Monte Carlo methods. We review the concept of electron correlation and introduce Variational Monte Carlo methods as an approach to going beyond...

    http://nanohub.org/resources/4564

  15. Computational Nanoscience, Lecture 21: Quantum Monte Carlo, part II

    15 May 2008 | Teaching Materials | Contributor(s): Jeffrey C Grossman, Elif Ertekin

    This is our second lecture in a series on Quantum Monte Carlo methods. We describe the Diffusion Monte Carlo approach here, in which the approximation to the solution is not restricted by choice...

    http://nanohub.org/resources/4566

  16. Computational Nanoscience, Lecture 4: Geometry Optimization and Seeing What You're Doing

    13 Feb 2008 | Teaching Materials | Contributor(s): Jeffrey C Grossman, Elif Ertekin

    In this lecture, we discuss various methods for finding the ground state structure of a given system by minimizing its energy. Derivative and non-derivative methods are discussed, as well as the...

    http://nanohub.org/resources/4035

  17. Development of the ReaxFF reactive force fields and applications to combustion, catalysis and material failure

    12 Sep 2011 | Online Presentations | Contributor(s): Adri van Duin

    This lecture will describe how the traditional, non-reactive FF-concept can be extended for application including reactive events by introducing bond order/bond distance concepts. Furthermore, it...

    http://nanohub.org/resources/11774

  18. Dynamics of Quantum Fluids: Path integral and Semiclassical Methods

    21 May 2008 | Online Presentations | Contributor(s): Nancy Makri

    The interplay of many-body nonlinear interactions and quantum mechanical effects such as zero-point motion or identical particle exchange symmetries lead to intriguing phenomena in low-temperature...

    http://nanohub.org/resources/4584

  19. ECE 606 Lecture 2: Quantum Mechanics

    14 Sep 2012 | Online Presentations | Contributor(s): Gerhard Klimeck

    http://nanohub.org/resources/15123

  20. ECE 606 Lecture 3: Elements of Quantum Mechanics

    28 Jan 2009 | Online Presentations | Contributor(s): Muhammad A. Alam

    Outline: Why do we need quantum physics Quantum concepts Formulation of quantum mechanics Conclusions R. F. Pierret, "Advanced Semiconductor Fundamentals", Modular Series on Solid State...

    http://nanohub.org/resources/5754

nanoHUB.org, a resource for nanoscience and nanotechnology, is supported by the National Science Foundation and other funding agencies. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.