Tags: quantum transport

Online Presentations (101-120 of 134)

  1. ECE 495N Lecture 8: Shrödinger's Equation

    30 Sep 2008 | | Contributor(s):: Supriyo Datta

  2. Quantum and Thermal Effects in Nanoscale Devices

    18 Sep 2008 | | Contributor(s):: Dragica Vasileska

    To investigate lattice heating within a Monte Carlo device simulation framework, we simultaneously solve the Boltzmann transport equation for the electrons, the 2D Poisson equation to get the self-consistent fields and the hydrodynamic equations for acoustic and optical phonons. The phonon...

  3. ECE 495N Lecture 7: Quantum Capacitance/Shrödinger's Equation

    17 Sep 2008 | | Contributor(s):: Supriyo Datta

  4. Lecture 6: Quantum Transport in Nanoscale FETs

    12 Sep 2008 | | Contributor(s):: Mark Lundstrom

    The previous lessons developed an analytical (or almost analytical) theory of the nanoscale FET, but to properly treat all the details, rigorous computer simulations are necessary. This lecture presents quantum transport simulations that display the internal physics of nanoscale MOSFETs. We use...

  5. Lecture 4A: Energy Exchange and Maxwell's Demon

    02 Sep 2008 | | Contributor(s):: Supriyo Datta

    Objective: To incorporate distributed energy exchange processes into the previous models from lectures 1 through 3 which are based on a "Landauer-like picture" where the Joule heating associated with current flow occurs entirely in the two contacts.Although there is experimental evidence that...

  6. Introduction: Nanoelectronics and the meaning of resistance

    20 Aug 2008 | | Contributor(s):: Supriyo Datta

    This lecture provides a brief overview of the five-day short course whose purpose is to introduce a unified viewpoint for a wide variety of nanoscale electronic devices of great interest for all kinds of applications including switching, energy conversion and sensing. Our objective, however, is...

  7. Lecture 1A: What and where is the resistance?

    20 Aug 2008 | | Contributor(s):: Supriyo Datta

    Objective: To introduce a simple quantitative model that highlights the essential parameters that determine electrical conduction: the density of states in the channel, D and the rates at which electrons hop in and out of the two contacts, labeled source and drain. This model is used to explain...

  8. Lecture 1B: What and where is the resistance?

    20 Aug 2008 | | Contributor(s):: Supriyo Datta

    Objective: To introduce a simple quantitative model that highlights the essential parameters that determine electrical conduction: the density of states in the channel, D and the rates at which electrons hop in and out of the two contacts, labeled source and drain. This model is used to explain...

  9. Lecture 2A: Quantum Transport

    20 Aug 2008 | | Contributor(s):: Supriyo Datta

    Objective: To extend the simple model from Lectures 1 into the full-fledged Non-equilibrium Green’s Function (NEGF) – Landauer model by introducing a spatial grid of N points and turning numbers like into (NxN) matrices like , with incoherent scattering introduced through . This model will be...

  10. Lecture 2B: Quantum Transport

    20 Aug 2008 | | Contributor(s):: Supriyo Datta

    Objective: To extend the simple model from Lectures 1 into the full-fledged Non-equilibrium Green’s Function (NEGF) – Landauer model by introducing a spatial grid of N points and turning numbers like into (NxN) matrices like , with incoherent scattering introduced through . This model will be...

  11. Lecture 3A: Spin Transport

    20 Aug 2008 | | Contributor(s):: Supriyo Datta

    Objective: To extend the model from Lectures 1 and 2 to include electron spin. Every electron is an elementary “magnet” with two states having opposite magnetic moments. Usually this has no major effect on device operation except to increase the conductance by a factor of two.But it is now...

  12. Lecture 3B: Spin Transport

    20 Aug 2008 | | Contributor(s):: Supriyo Datta

    Objective: To extend the model from Lectures 1 and 2 to include electron spin. Every electron is an elementary “magnet” with two states having opposite magnetic moments. Usually this has no major effect on device operation except to increase the conductance by a factor of two.But it is now...

  13. Lecture 4B: Energy Exchange and Maxwell’s Demon

    20 Aug 2008 | | Contributor(s):: Supriyo Datta

    Objective: To incorporate distributed energy exchange processes into the previous models from lectures 1 through 3 which are based on a “Landauer-like picture” where the Joule heating associated with current flow occurs entirely in the two contacts.Although there is experimental evidence that...

  14. Lecture 5A: Correlations and Entanglement

    20 Aug 2008 | | Contributor(s):: Supriyo Datta

    Objective: To relate the one-electron picture used throughout these lectures to the more general but less tractable many-particle picture that underlies it. We introduce this new viewpoint using the example of Coulomb blockaded electronic devices that are difficult to model within the picture...

  15. Lecture 5B: Correlations and Entanglement

    20 Aug 2008 | | Contributor(s):: Supriyo Datta

    Objective: To relate the one-electron picture used throughout these lectures to the more general but less tractable many-particle picture that underlies it. We introduce this new viewpoint using the example of Coulomb blockaded electronic devices that are difficult to model within the picture...

  16. Nano Carbon: From ballistic transistors to atomic drumheads

    14 May 2008 | | Contributor(s):: Paul L. McEuen

    Carbon takes many forms, from precious diamonds to lowly graphite. Surprisingly, it is the latter that is the most prized by nano physicists. Graphene, a single layer of graphite, can serve as an impenetrable membrane a single atom thick. Rolled up into a nanometer-diameter cylinder--a carbon...

  17. Nanoelectronic Modeling: Multimillion Atom Simulations, Transport, and HPC Scaling to 23,000 Processors

    07 Mar 2008 | | Contributor(s):: Gerhard Klimeck

    Future field effect transistors will be on the same length scales as “esoteric” devices such as quantum dots, nanowires, ultra-scaled quantum wells, and resonant tunneling diodes. In those structures the behavior of carriers and their interaction with their environment need to be fundamentally...

  18. MCW07 A Quantum Open Systems Approach to Molecular-Scale Devices

    25 Feb 2008 | | Contributor(s):: Yongqiang Xue

    Experimental advances in electrically and optically probing individual molecules have provided new insights into the behavior of single quantum objects and their interaction with the nanoenvironments without requiring ensemble average. Molecular-scale devices are open quantum systems whose...

  19. MCW07 Physics of Contact Induced Current Asymmetry in Transport Through Molecules

    25 Feb 2008 | | Contributor(s):: Bhaskaran Muralidharan, owen miller, Neeti Kapur, Avik Ghosh, Supriyo Datta

    We first outline the qualitatively different physics involved in the charging-induced current asymmetries in molecular conductors operating in the strongly coupled (weakly interacting) self-consistent field (SCF) and the weakly coupled (strongly interacting) Coulomb Blockade (CB) regimes. The CB...

  20. Exploring Physical and Chemical control of molecular conductance: A computational study

    31 Jan 2008 | | Contributor(s):: Barry D. Dunietz