Tags: quantum transport

Tools (1-9 of 9)

  1. ABACUS - Assembly of Basic Applications for Coordinated Understanding of Semiconductors

    16 Jul 2008 | | Contributor(s):: Xufeng Wang, Dragica Vasileska, Gerhard Klimeck

    One-stop-shop for teaching semiconductor device education

  2. Archimedes, GNU Monte Carlo simulator

    29 May 2008 | | Contributor(s):: Jean Michel D Sellier

    GNU Monte Carlo simulation of 2D semiconductor devices, III-V materials

  3. Coulomb Blockade Simulation

    05 Jul 2006 | | Contributor(s):: Xufeng Wang, Bhaskaran Muralidharan, Gerhard Klimeck

    Simulate Coulomb Blockade through Many-Body Calculations in a single and double quantum dot system

  4. Matdcal

    30 Jan 2008 | | Contributor(s):: Kirk Bevan

    Non-equilibrium Green's Function Density Functional Theory Simulator

  5. Path Integral Monte Carlo

    13 Dec 2007 | | Contributor(s):: John Shumway, Matthew Gilbert

    Tool Description

  6. Piece-Wise Constant Potential Barriers Tool

    30 Jun 2008 | | Contributor(s):: Xufeng Wang, Samarth Agarwal, Gerhard Klimeck, Dragica Vasileska, Mathieu Luisier, Jean Michel D Sellier

    Transmission and the reflection coefficient of a five, seven, nine, eleven and 2n-segment piece-wise constant potential energy profile

  7. Quantum Point Contact

    18 May 2006 | | Contributor(s):: Richard Akis, Shaikh S. Ahmed, Mohammad Zunaidur Rashid, Richard Akis

    Simulates the conductance and associated wavefunctions of Quantum Point Contacts.

  8. Thermoelectric Power Factor Calculator for Nanocrystalline Composites

    18 Oct 2008 | | Contributor(s):: Terence Musho, Greg Walker

    Quantum Simulation of the Seebeck Coefficient and Electrical Conductivity in a 2D Nanocrystalline Composite Structure using Non-Equilibrium Green's Functions

  9. Thermoelectric Power Factor Calculator for Superlattices

    18 Oct 2008 | | Contributor(s):: Terence Musho, Greg Walker

    Quantum Simulation of the Seebeck Coefficient and Electrical Conductivity in 1D Superlattice Structures using Non-Equilibrium Green's Functions