Support

Support Options

Submit a Support Ticket

 
Home Tags quantum transport All Categories

Tags: quantum transport

All Categories (21-40 of 236)

  1. NEMO5 Public Examples

    07 Mar 2012 | Downloads | Contributor(s): James Fonseca

    Public examples have been removed. Please see the regression test resource https://nanohub.org/resources/19171 revision 8163 Updated August 8, 2012 bulk_Cu...

    http://nanohub.org/resources/13410

  2. NEMO 5 Latest Version Executable

    13 Feb 2012 | Downloads | Contributor(s): Gerhard Klimeck

    This tarball contains the latest version of a statically compiled NEMO5 for x86 64 bit linux. It also includes the materials database. revision 13611 uploaded Jan 10, 2014

    http://nanohub.org/resources/13117

  3. ECE 656 Lecture 35: Introduction to Quantum Transport in Devices

    25 Jan 2012 | Online Presentations | Contributor(s): Mark Lundstrom

    Outline: Introduction Semiclassical ballistic transport Quantum ballistic transport Carrier scattering in quantum transport Discussion Summary

    http://nanohub.org/resources/12710

  4. Dissipative Quantum Transport in Semiconductor Nanostructures

    28 Dec 2011 | Papers | Contributor(s): Peter Greck

    In this work, we investigate dissipative quantum transport properties of an open system. After presenting the background of ballistic quantum transport calculations, a simple scattering mechanism,...

    http://nanohub.org/resources/12756

  5. Elvis Flaviano Arguelles

    http://nanohub.org/members/61299

  6. How to model metal/source drain MOSFET in nanoscale device simulators?

    Open | Responses: 1

    Hello; I want to model metal source/drain MOSFET in nanoscale device simulators. How can I define schottky contact at source/drain channel interface? Thanks

    http://nanohub.org/answers/question/854

  7. michael tsai

    http://nanohub.org/members/56617

  8. What are the proper transport models at the nanoscale?

    30 Jun 2011 | Teaching Materials | Contributor(s): Dragica Vasileska, Gerhard Klimeck

    This presentation is part of the series Nanoelectronics and Modeling at the Nanoscale

    http://nanohub.org/resources/11574

  9. Additional Tutorials on Selected Topics in Nanotechnology

    29 Mar 2011 | Workshops | Contributor(s): Gerhard Klimeck, Umesh V. Waghmare, Timothy S Fisher, N. S. Vidhyadhiraja

    Select tutorials in nanotechnology, a part of the 2010 NCN@Purdue Summer School: Electronics from the Bottom Up.

    http://nanohub.org/resources/11041

  10. Tutorial 4: Far-From-Equilibrium Quantum Transport

    29 Mar 2011 | Courses | Contributor(s): Gerhard Klimeck

    These lectures focus on the application of the theories using the nanoelectronic modeling tools NEMO 1- D, NEMO 3-D, and OMEN to realistically extended devices. Topics to be covered are realistic...

    http://nanohub.org/resources/11042

  11. Tutorial 4a: High Bias Quantum Transport in Resonant Tunneling Diodes

    29 Mar 2011 | Online Presentations | Contributor(s): Gerhard Klimeck

    Outline: Resonant Tunneling Diodes - NEMO1D: Motivation / History / Key Insights Open 1D Systems: Transmission through Double Barrier Structures - Resonant Tunneling Introduction to RTDs:...

    http://nanohub.org/resources/11043

  12. Tutorial 4b: Introduction to the NEMO3D Tool - Electronic Structure and Transport in 3D

    29 Mar 2011 | Online Presentations | Contributor(s): Gerhard Klimeck

    Electronic Structure and Transport in 3D - Quantum Dots, Nanowires and Ultra-Thin Body Transistors

    http://nanohub.org/resources/11049

  13. Tutorial 4c: Formation of Bandstructure in Finite Superlattices (Exercise Session)

    29 Mar 2011 | Online Presentations | Contributor(s): Gerhard Klimeck

    How does bandstructure occur? How large does a repeated system have to be? How does a finite superlattice compare to an infinite superlattice?

    http://nanohub.org/resources/11051

  14. Tutorial 4d: Formation of Bandstructure in Finite Superlattices (Exercise Demo)

    29 Mar 2011 | Online Presentations | Contributor(s): Gerhard Klimeck

    Demonstration of the Piece-Wise Constant Potential Barriers Tool.

    http://nanohub.org/resources/11052

  15. Mirza Mohammad Monzure Elahi

    http://nanohub.org/members/52175

  16. 2010 NCN@Purdue Summer School: Electronics from the Bottom Up

    18 Jan 2011 | Workshops

    Electronics from the Bottom Up seeks to bring a new perspective to electronic devices – one that is designed to help realize the opportunities that nanotechnology presents.

    http://nanohub.org/resources/8878

  17. Atomistic Modeling and Simulation Tools for Nanoelectronics and their Deployment on nanoHUB.org

    16 Dec 2010 | Online Presentations | Contributor(s): Gerhard Klimeck

    At the nanometer scale the concepts of device and material meet and a new device is a new material and vice versa. While atomistic device representations are novel to device physicists, the...

    http://nanohub.org/resources/10199

  18. Nanoelectronic Devices, With an Introduction to Spintronics

    09 Sep 2010 | Courses | Contributor(s): Supriyo Datta, Mark Lundstrom

        Nanoelectronic devices are at the heart of today's powerful computers and are also of great interest for many emerging applications including...

    http://nanohub.org/resources/9363

  19. Discussion Session 2 (Lectures 3 and 4)

    08 Sep 2010 | Online Presentations | Contributor(s): Supriyo Datta

    “Electronics from the Bottom Up” is an educational initiative designed to bring a new perspective to the field of nano device engineering. It is co-sponsored by the Intel Foundation and the...

    http://nanohub.org/resources/9664

  20. Lecture 3: Introduction to NEGF

    08 Sep 2010 | Online Presentations | Contributor(s): Supriyo Datta

    “Electronics from the Bottom Up” is an educational initiative designed to bring a new perspective to the field of nano device engineering. It is co-sponsored by the Intel Foundation and...

    http://nanohub.org/resources/9659

nanoHUB.org, a resource for nanoscience and nanotechnology, is supported by the National Science Foundation and other funding agencies. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.