Tags: quantum transport

All Categories (61-80 of 250)

  1. Nanoelectronic Modeling Lecture 25b: NEMO1D - Hole Bandstructure in Quantum Wells and Hole Transport in RTDs

    09 Mar 2010 | | Contributor(s):: Gerhard Klimeck

    Heterostructures such as resonant tunneling diodes, quantum well photodetectors and lasers, and cascade lasers break the symmetry of the crystalline lattice. Such break in lattice symmetry causes a strong interaction of heavy-, light- and split-off hole bands. The bandstructure of holes and the...

  2. Quantum transport in semiconductor nanostructures

    04 Mar 2010 | | Contributor(s):: Tillmann Christoph Kubis

    PhD thesis of Tillmann Christoph KubisThe main objective of this thesis is to theoretically predict the stationary charge and spin transport in mesoscopic semiconductor quantum devices in the presence of phonons and device imperfections. It is well known that the nonequilibrium Green's function...

  3. ECE 495N: Fundamentals of Nanoelectronics Lecture Notes (Fall 2009)

    04 Feb 2010 | | Contributor(s):: Mehdi Salmani Jelodar, Supriyo Datta (editor)

    Lecture notes for the Fall 2009 teaching of ECE 495: Fundamentals of Nanoelectronics.

  4. Nanoelectronic Modeling: From Quantum Mechanics and Atoms to Realistic Devices

    25 Jan 2010 | | Contributor(s):: Gerhard Klimeck

    The goal of this series of lectures is to explain the critical concepts in the understanding of the state-of-the-art modeling of nanoelectronic devices such as resonant tunneling diodes, quantum wells, quantum dots, nanowires, and ultra-scaled transistors. Three fundamental concepts critical to...

  5. Artem Fedyay

    Artem Fediai, M.S. is a post-graduate student at the Department of Physical and biomedical electronics of Kiev Polytechnic Institute. He graduated the same Department in 2007. He is assisting...

    http://nanohub.org/members/40361

  6. NCN at Purdue Tools

    NCN@Purdue Tool Support We have identified a list of tools for which we commit the following level of service: monitor support tickets, questions, and wishlists and provide a response...

    http://nanohub.org/wiki/NCNatPurdueTools

  7. From Semi-Classical to Quantum Transport Modeling

    10 Aug 2009 | | Contributor(s):: Dragica Vasileska

    This set of powerpoint slides series provides insight on what are the tools available for modeling devices that behave either classically or quantum-mechanically. An in-depth description is provided to the approaches with emphasis on the advantages and disadvantages of each approach. Conclusions...

  8. From Semi-Classical to Quantum Transport Modeling: Drift-Diffusion and Hydrodynamic Modeling

    10 Aug 2009 | | Contributor(s):: Dragica Vasileska

    This set of powerpoint slides series provides insight on what are the tools available for modeling devices that behave either classically or quantum-mechanically. An in-depth description is provided to the approaches with emphasis on the advantages and disadvantages of each approach. Conclusions...

  9. From Semi-Classical to Quantum Transport Modeling: Particle-Based Device Simulations

    10 Aug 2009 | | Contributor(s):: Dragica Vasileska

    This set of powerpoint slides series provides insight on what are the tools available for modeling devices that behave either classically or quantum-mechanically. An in-depth description is provided to the approaches with emphasis on the advantages and disadvantages of each approach. Conclusions...

  10. From Semi-Classical to Quantum Transport Modeling: Quantum Corrections to Semiclassical Approaches

    10 Aug 2009 | | Contributor(s):: Dragica Vasileska

    This set of powerpoint slides series provides insight on what are the tools available for modeling devices that behave either classically or quantum-mechanically. An in-depth description is provided to the approaches with emphasis on the advantages and disadvantages of each approach. Conclusions...

  11. From Semi-Classical to Quantum Transport Modeling: Quantum Transport - Recursive Green's function method, CBR approach and Atomistic

    10 Aug 2009 | | Contributor(s):: Dragica Vasileska

    This set of powerpoint slides series provides insight on what are the tools available for modeling devices that behave either classically or quantum-mechanically. An in-depth description is provided to the approaches with emphasis on the advantages and disadvantages of each approach. Conclusions...

  12. From Semi-Classical to Quantum Transport Modeling: Quantum Transport - Usuki Method and Theoretical Description of Green's Functions

    10 Aug 2009 | | Contributor(s):: Dragica Vasileska

    This set of powerpoint slides series provides insight on what are the tools available for modeling devices that behave either classically or quantum-mechanically. An in-depth description is provided to the approaches with emphasis on the advantages and disadvantages of each approach. Conclusions...

  13. From Semi-Classical to Quantum Transport Modeling: What is Computational Electronics?

    10 Aug 2009 | | Contributor(s):: Dragica Vasileska

    This set of powerpoint slides series provides insight on what are the tools available for modeling devices that behave either classically or quantum-mechanically. An in-depth description is provided to the approaches with emphasis on the advantages and disadvantages of each approach. Conclusions...

  14. ECE 495N F08 Exam 2

    08 Jul 2009 | | Contributor(s):: Supriyo Datta

  15. ECE 495N F08 Exam 2 (Practice)

    08 Jul 2009 | | Contributor(s):: Supriyo Datta

  16. ECE 495N F08 Final Exam

    08 Jul 2009 | | Contributor(s):: Supriyo Datta

  17. ECE 495N F08 Final Exam (Practice)

    08 Jul 2009 | | Contributor(s):: Supriyo Datta

  18. ECE 495N F08 Exam 1

    08 Jul 2009 | | Contributor(s):: Supriyo Datta

  19. ECE 495N F08 Exam 1 (Practice)

    08 Jul 2009 | | Contributor(s):: Supriyo Datta

  20. ECE 495N F08 Homework 6 (Lectures 22-25)

    08 Jul 2009 | | Contributor(s):: Supriyo Datta