Tags: resonant tunneling diodes

Description

Resonant tunneling diode (RTD) is a diode with a resonant tunneling structure in which electrons can tunnel through some resonant states at certain energy levels. The current–voltage characteristic often exhibits negative differential resistance regions.

Learn more about quantum dots from the many resources on this site, listed below. More information on RTD can be found here.

All Categories (1-20 of 28)

  1. is there a self consisitent simulator of RTD other than NEGF formalism?

    Closed | Responses: 0

    http://nanohub.org/answers/question/2034

  2. Mazen Shanawani

    http://nanohub.org/members/183391

  3. Exercise: Resonant Tunneling Diode

    13 Jul 2011 | Contributor(s):: Dragica Vasileska, Gerhard Klimeck

    This is an exercise for resonant tunneling diode.

  4. S ABRAHAM SAMPSON

    http://nanohub.org/members/54386

  5. Additional Tutorials on Selected Topics in Nanotechnology

    29 Mar 2011 | | Contributor(s):: Gerhard Klimeck, Umesh V. Waghmare, Timothy S Fisher, N. S. Vidhyadhiraja

    Select tutorials in nanotechnology, a part of the 2010 NCN@Purdue Summer School: Electronics from the Bottom Up.

  6. Tutorial 4: Far-From-Equilibrium Quantum Transport

    29 Mar 2011 | | Contributor(s):: Gerhard Klimeck

    These lectures focus on the application of the theories using the nanoelectronic modeling tools NEMO 1- D, NEMO 3-D, and OMEN to realistically extended devices. Topics to be covered are realistic resonant tunneling diodes, quantum dots, nanowires, and Ultra-Thin-Body Transistors.

  7. Tutorial 4a: High Bias Quantum Transport in Resonant Tunneling Diodes

    29 Mar 2011 | | Contributor(s):: Gerhard Klimeck

    Outline:Resonant Tunneling Diodes - NEMO1D: Motivation / History / Key InsightsOpen 1D Systems: Transmission through Double Barrier Structures - Resonant TunnelingIntroduction to RTDs: Linear Potential DropIntroduction to RTDs: Realistic Doping ProfilesIntroduction to RTDs: Relaxation Scattering...

  8. Tutorial 4c: Formation of Bandstructure in Finite Superlattices (Exercise Session)

    29 Mar 2011 | | Contributor(s):: Gerhard Klimeck

    How does bandstructure occur? How large does a repeated system have to be? How does a finite superlattice compare to an infinite superlattice?

  9. Tutorial 4d: Formation of Bandstructure in Finite Superlattices (Exercise Demo)

    29 Mar 2011 | | Contributor(s):: Gerhard Klimeck

    Demonstration of thePiece-Wise Constant Potential Barriers Tool.

  10. 2010 NCN@Purdue Summer School: Electronics from the Bottom Up

    18 Jan 2011 |

    Electronics from the Bottom Up seeks to bring a new perspective to electronic devices – one that is designed to help realize the opportunities that nanotechnology presents.

  11. Analytical and Numerical Solution of the Double Barrier Problem

    28 Jun 2010 | | Contributor(s):: Gerhard Klimeck, Parijat Sengupta, Dragica Vasileska

    Tunneling is fully quantum-mechanical effect that does not have classical analog. Tunneling has revolutionized surface science by its utilization in scanning tunneling microscopes. In some device applications tunneling is required for the operation of the device (Resonant tunneling diodes,...

  12. Piece-Wise Constant Potential Barrier Tool MATLAB Code

    19 Jun 2010 | | Contributor(s):: Dragica Vasileska, Gerhard Klimeck

    this is the MATLAB code of the PCPBT in the effective mass approximation.

  13. Nanotechnology Animation Gallery

    22 Apr 2010 | | Contributor(s):: Saumitra Raj Mehrotra, Gerhard Klimeck

    Animations and visualization are generated with various nanoHUB.org tools to enable insight into nanotechnology and nanoscience. Click on image for detailed description and larger image download. Additional animations are also available Featured nanoHUB tools: Band Structure Lab. Carrier...

  14. Nanoelectronic Modeling nanoHUB Demo 2: RTD simulation with NEGF

    09 Mar 2010 | | Contributor(s):: Gerhard Klimeck

    Demonstration of resonant tunneling diode (RTD) simulation using the RTD Simulation with NEGF Tool with a Hartree potential model showing potential profile, charge densities, current-voltage characteristics, and resonance energies. Also demonstrated is a RTD simulation using a Thomas-Fermi...

  15. Nanoelectronic Modeling nanoHUB Demo 1: nanoHUB Tool Usage with RTD Simulation with NEGF

    09 Mar 2010 | | Contributor(s):: Gerhard Klimeck

    Demonstration of running tools on the nanoHUB. Demonstrated is the RTD Simulation with NEGF Tool using a simple level-drop potential model and a more realistic device using a Thomas-Fermi potential model.

  16. Nanoelectronic Modeling: Exercises 1-3 - Barrier Structures, RTDs, and Quantum Dots

    27 Jan 2010 | | Contributor(s):: Gerhard Klimeck

    Exercises:Barrier StructuresUses: Piece-Wise Constant Potential Barrier ToolResonant Tunneling DiodesUses: Resonant Tunneling Diode Simulation with NEGF • Hartree calculation • Thomas Fermi potentialQuantum DotsUses: Quantum Dot Lab • pyramidal dot

  17. Nanoelectronic Modeling Lecture 19: Introduction to RTDs - Asymmetric Structures

    27 Jan 2010 | | Contributor(s):: Gerhard Klimeck

    This lecture explores this effect in more detail by targeting an RTD that has a deliberate asymmetric structure. The collector barrier is chosen thicker than the emitter barrier. With this set-up we expect that the tunneling rate into the RTD from the emitter is faster than the tunneling rate...

  18. Nanoelectronic Modeling Lecture 18: Introduction to RTDs - Quantum Charge Self-Consistency (Hartree)

    27 Jan 2010 | | Contributor(s):: Gerhard Klimeck

    In this semi-classical charge and potential model the quantum mechanical simulation is performed once and the quantum mechanical charge is in general not identical to the semi-classical charge.

  19. Nanoelectronic Modeling Lecture 17: Introduction to RTDs - Relaxation Scattering in the Emitter

    27 Jan 2010 | | Contributor(s):: Gerhard Klimeck

    Realistic RTDs will have nonlinear electrostatic potential in their emitter. Typically a triangular well is formed in the emitter due to the applied bias and the emitter thus contains discrete quasi bound states.

  20. Nanoelectronic Modeling Lecture 16: Introduction to RTDs - Realistic Doping Profiles

    27 Jan 2010 | | Contributor(s):: Gerhard Klimeck

    Realistic RTDs need extremely high doping to provide enough carriers for high current densities. However, Impurity scattering can destroy the RTD performance. The dopants are therefore typically spaced 20-100nm away from the central double barrier structure.