Tags: scattering

Description

Scattering is a general physical process where some forms of radiation, such as light, sound, or moving particles, are forced to deviate from a straight trajectory by one or more localized non-uniformities in the medium through which they pass. In conventional use, this also includes deviation of reflected radiation from the angle predicted by the law of reflection. Reflections that undergo scattering are often called diffuse reflections and unscattered reflections are called specular(mirror-like) reflections.

Learn more about quantum dots from the many resources on this site, listed below. More information on Scattering can be found here.

All Categories (61-80 of 85)

  1. Lecture 9: Introduction to Phonon Transport

    17 Aug 2011 | | Contributor(s):: Mark Lundstrom

    This lecture is an introduction to phonon transport. Key similarities and differences between electron and phonon transport are discussed.

  2. Low Bias Transport in Graphene: An Introduction (lecture notes)

    22 Sep 2009 | | Contributor(s):: Mark Lundstrom, tony low, Dionisis Berdebes

    These notes complement a lecture with the same title presented by Mark Lundstrom and Dionisis Berdebes, at the NCN@Purdue Summer School, July 20-24, 2009.

  3. Matdcal

    30 Jan 2008 | | Contributor(s):: Kirk Bevan

    Non-equilibrium Green's Function Density Functional Theory Simulator

  4. Modeling Quantum Transport in Nanoscale Transistors

    27 Jun 2013 | | Contributor(s):: Ramesh Venugopal

    As critical transistor dimensions scale below the 100 nm (nanoscale) regime, quantum mechanical effects begin to manifest themselves and affect important device performance metrics. Therefore, simulation tools which can be applied to design nanoscale transistors in the future, require new theory...

  5. nanoDDSCAT

    23 Apr 2013 | | Contributor(s):: Prashant K Jain, Nahil Sobh, Jeremy Smith, AbderRahman N Sobh, Sarah White, Jacob Faucheaux, John Feser

    Calculate scattering and absorption of light by targets with arbitrary geometries and complex refractive index.

  6. nanoDDSCAT+

    13 Aug 2014 | | Contributor(s):: AbderRahman N Sobh, Sarah White, Jeremy Smith, Nahil Sobh, Prashant K Jain

    Combines the Discrete Dipole Scattering (DDSCAT) tool with the DDAConvert tool for a single workflow for custom shapes.

  7. Nanoelectronic Modeling Lecture 23: NEMO1D - Importance of New Boundary Conditions

    02 Mar 2010 | | Contributor(s):: Gerhard Klimeck

    One of the key insights gained during the NEMO1D project was the development of new boundary conditions that enabled the modeling of realistically extended Resonant Tunneling Diodes (RTDs). The new boundary conditions are based on the partitioning of the device into emitter and collector...

  8. Nanoelectronic Modeling Lecture 24: NEMO1D - Incoherent Scattering

    02 Mar 2010 | | Contributor(s):: Gerhard Klimeck

    Incoherent processes due to phonons, interface roughness and disorder had been suspected to be the primary source of the valley current of resonant tunneling diodes (RTDs) at the beginning of the NEMO1D project in 1994. The modeling tool NEMO was created at Texas Instruments to fundamentally...

  9. Nanoelectronic Modeling Lecture 25a: NEMO1D - Full Bandstructure Effects

    02 Mar 2010 | | Contributor(s):: Gerhard Klimeck

    (quantitative RTD modeling at room temperature)

  10. Nanoelectronic Modeling Lecture 26: NEMO1D -

    02 Mar 2010 | | Contributor(s):: Gerhard Klimeck

    NEMO1D demonstrated the first industrial strength implementation of NEGF into a simulator that quantitatively simulated resonant tunneling diodes. The development of efficient algorithms that simulate scattering from polar optical phonons, acoustic phonons, alloy disorder, and interface roughness...

  11. nanoHUB-U: Fundamentals of Nanoelectronics - Part B: Quantum Transport, 2nd Edition

    Courses|' 28 May 2015

    Second in a two part series, this nanotechnology course provides an introduction to more advanced topics, including the Non-Equilibrium Green’s Function (NEGF) method widely used to analyze quantum...

    https://nanohub.org/courses/FON2

  12. nanoJoule

    28 May 2008 | | Contributor(s):: Feifei Lian, Feifei Lian, Feifei Lian

    This tool performs a self-consistent simulation of the current-voltage curve of a metallic single-wall carbon nanotube with Joule heating.

  13. Nanoscale Transistors Lecture 10: Scattering Model

    19 Jul 2012 | | Contributor(s):: Mark Lundstrom

  14. Nanoscale Transistors Lecture 9: Scattering and Transmission

    19 Jul 2012 | | Contributor(s):: Mark Lundstrom

  15. Mar 04 2009

    NCN@Illiinois Seminar: Silicon-Interface Scattering in Carbon Nanotube Transistors

    Slava V. Rotkin (Leghigh U.) takes about:Silicon-Interface Scattering in Carbon Nanotube TransistorsRecent experimental studies on carbon nanotube materials and also graphene revealed significant...

    https://nanohub.org/events/details/243

  16. Notes on Scattering and Mobility in 1D, 2D, and 3D

    03 Nov 2009 | | Contributor(s):: Dmitri Nikonov, Md. Sayed Hasan, George Bourianoff

    Derivation of the phonon-limited mobility is reviewed for electrons in bulk (3D) orquantum confined (2D and 1D) semiconductor structures. Analytical estimates are madethat show the mobility in quantum confined structures is, in general, lower or no higherthan in non-confined ones.

  17. Phonon Interactions in Single-Dopant-Based Transistors: Temperature and Size Dependence

    12 Nov 2015 | | Contributor(s):: Marc Bescond, Nicolas Cavassilas, Salim Berrada

    IWCE 2015 presentation. in this work we investigate the dependence of electron-phonon scattering in single dopant-based nanowire transistor with respect to temperature and dimensions. we use a 3d real-space non-equilibrium green': ; s function (negf) approach where electron-phonon...

  18. SDMS L4.03: Mobility Modeling

    26 Sep 2023 | | Contributor(s):: Dragica Vasileska

  19. Short Channel Effects

    04 Mar 2021 | | Contributor(s):: Ashish anil Bait

    Here are the all short channel effects that you require.

  20. Surface scattering: Made simple

    03 Sep 2010 | | Contributor(s):: Dmitri Nikonov, Himadri Pal

    Surface scattering in a quantum well.