Tags: scattering

Description

Scattering is a general physical process where some forms of radiation, such as light, sound, or moving particles, are forced to deviate from a straight trajectory by one or more localized non-uniformities in the medium through which they pass. In conventional use, this also includes deviation of reflected radiation from the angle predicted by the law of reflection. Reflections that undergo scattering are often called diffuse reflections and unscattered reflections are called specular(mirror-like) reflections.

Learn more about quantum dots from the many resources on this site, listed below. More information on Scattering can be found here.

All Categories (41-60 of 73)

  1. Illinois 2009 nano-biophotonics Summer School, Lecture 3: Elastic Light Scattering

    20 Oct 2009 | | Contributor(s):: Gabriel Popescu

    Elastic Light ScatteringTopics: Light Scattering by Inhomogeneous Media Scattering on Single Particles Scattering on Simple Particles Rayleigh Scattering The Born Approximation The Spatial Correlation Function Single Particle Under Born approximation Ensemble of Particles Mie Scattering Multiple...

  2. Illinois 2009 nano-biophotonics Summer School, Lecture 4: Dynamic Light Scattering

    28 Oct 2009 | | Contributor(s):: Gabriel Popescu

    Dynamic Light ScatteringTopics: DLS Typical Geometry Simplistic Picture: Young Interferometer 1st Order Correlation (g1)- DLS Viscous Media and Brownian Motion Observations Brownain Motion Coherence Effects Experimental Geometries Other Applications Viscoelastic

  3. Illinois ECE 460 Optical Imaging, Chapter 5: Light Scattering

    29 Jul 2008 | | Contributor(s):: Gabriel Popescu, Andre da Costa Teves, Christopher Nixon, Glen Svenningsen

    This chapter covers important topics related to Light Scattering: Simple particles, Rayleigh Scattering, The Born Approximation, Spatial Correlation, Ensemble of Particles, The Transport Equation, etc.Notes developed by Professor Gabriel Popescu from University of Illinois at Urbana-Champaign.

  4. Illinois ECE 598EP Lecture 8 - Hot Chips: Thermal Conductivity of Solids

    24 Jun 2009 | | Contributor(s):: Eric Pop, Omar N Sobh

    Thermal Conductivity of SolidsTopics: Kinetic Theory of Energy Transport Simple Kinetic Theory Assumptions Phonon MFP and Scattering Time Silicon Film Thermal Conductivity Silicon Nanowire Thermal Conductivity Isotope Scattering Electron Thermal Conductivity Thermal Conductivity of Cu and Al

  5. Illinois Phys550 Molecular Biophysics Lecture 12: Radiation Processes Light Scattering

    08 Mar 2010 | | Contributor(s):: Klaus Schulten

  6. Illinois Phys550 Molecular Biophysics Lecture 6: Structure Analysis by X-ray and Electron Scattering I

    12 Feb 2010 | | Contributor(s):: Klaus Schulten

    Crystal Lattice Scattering of Individual Atoms

  7. Illinois Phys550 Molecular Biophysics Lecture 7: Structure Analysis by X-ray and Electron Scattering II

    16 Feb 2010 | | Contributor(s):: Klaus Schulten

  8. Inelastic Scattering in NEGF: Matlab Implementation and Exercises

    31 Dec 2010 | | Contributor(s):: Samiran Ganguly, Supriyo Datta

    A set of Matlab scripts has been developed illustrating the treatment of inelastic scattering in non-equilibrium Greens function (NEGF) based quantum transport models. The first script highlights the core principles using a simple conductor described by a (2x2) Hamiltonian matrix, while the...

  9. Lecture 10: Case study-Near-equilibrium Transport in Graphene

    19 Aug 2011 | | Contributor(s):: Mark Lundstrom

    Near-equilibrium transport in graphene as an example of how to apply the concepts in lectures 1-8.

  10. Lecture 3: Low Bias Transport in Graphene: An Introduction

    18 Sep 2009 | | Contributor(s):: Mark Lundstrom

    Outline:Introduction and ObjectivesTheoryExperimental approachResultsDiscussionSummaryLecture notes are available for this lecture.

  11. Lecture 4: Scattering in Nanoscale MOSFETs

    08 Sep 2008 | | Contributor(s):: Mark Lundstrom

    No MOSFET is ever fully ballistic - there is always some carrier scattering. Scattering makes the problem complicated and requires detailed numerical simulations to treat properly. My objective in this lecture is to present a simple, physical picture that describes the essence of the problem and...

  12. Lecture 6: An Introduction to Scattering

    16 Aug 2011 | | Contributor(s):: Mark Lundstrom

    In this lecture, we show how the mean-free-path (mfp) is related to thetime between scattering events and briefly discuss how the scattering time is related to underlying physical processes.

  13. Lecture 9: Introduction to Phonon Transport

    17 Aug 2011 | | Contributor(s):: Mark Lundstrom

    This lecture is an introduction to phonon transport. Key similarities and differences between electron and phonon transport are discussed.

  14. Low Bias Transport in Graphene: An Introduction (lecture notes)

    22 Sep 2009 | | Contributor(s):: Mark Lundstrom, tony low, Dionisis Berdebes

    These notes complement a lecture with the same title presented by Mark Lundstrom and Dionisis Berdebes, at the NCN@Purdue Summer School, July 20-24, 2009.

  15. Matdcal

    30 Jan 2008 | | Contributor(s):: Kirk Bevan

    Non-equilibrium Green's Function Density Functional Theory Simulator

  16. Modeling Quantum Transport in Nanoscale Transistors

    27 Jun 2013 | | Contributor(s):: Ramesh Venugopal

    As critical transistor dimensions scale below the 100 nm (nanoscale) regime, quantum mechanical effects begin to manifest themselves and affect important device performance metrics. Therefore, simulation tools which can be applied to design nanoscale transistors in the future, require new theory...

  17. nanoDDSCAT

    23 Apr 2013 | | Contributor(s):: Prashant K Jain, Nahil Sobh, Jeremy Smith, AbderRahman N Sobh, Sarah White, Jacob Faucheaux, John Feser

    Calculate scattering and absorption of light by targets with arbitrary geometries and complex refractive index.

  18. nanoDDSCAT+

    13 Aug 2014 | | Contributor(s):: AbderRahman N Sobh, Sarah White, Jeremy Smith, Nahil Sobh, Prashant K Jain

    Combines the Discrete Dipole Scattering (DDSCAT) tool with the DDAConvert tool for a single workflow for custom shapes.

  19. Nanoelectronic Modeling Lecture 23: NEMO1D - Importance of New Boundary Conditions

    02 Mar 2010 | | Contributor(s):: Gerhard Klimeck

    One of the key insights gained during the NEMO1D project was the development of new boundary conditions that enabled the modeling of realistically extended Resonant Tunneling Diodes (RTDs). The new boundary conditions are based on the partitioning of the device into emitter and collector...

  20. Nanoelectronic Modeling Lecture 24: NEMO1D - Incoherent Scattering

    02 Mar 2010 | | Contributor(s):: Gerhard Klimeck

    Incoherent processes due to phonons, interface roughness and disorder had been suspected to be the primary source of the valley current of resonant tunneling diodes (RTDs) at the beginning of the NEMO1D project in 1994. The modeling tool NEMO was created at Texas Instruments to fundamentally...