Tags: simulation and modeling

Resources (61-80 of 88)

  1. Resonant Tunneling Diode Simulation with NEGF: First-Time User Guide

    01 Jun 2009 | | Contributor(s):: Samarth Agarwal, Gerhard Klimeck

    This first-time user guide for Resonant Tunneling Diode Simulation with NEGF provides some fundamental concepts regarding RTDs along with details on how device geometry and simulation parameters influence current and charge distribution inside the device.NCN@Purdue

  2. Ripples and Warping of Graphene: A Theoretical Study

    08 Jun 2010 | | Contributor(s):: Umesh V. Waghmare

    We use first-principles density functional theory based analysis to understand formation of ripples in graphene and related 2-D materials. For an infinite graphene, we show that ripples are linked with a low energy branch of phonons that exhibits quadratic dispersion at long wave-lengths. Many...

  3. Save Nanohub Simulations

    05 Mar 2021 | | Contributor(s):: Ashish anil Bait

    Save your nanoHUB simulations in very easy way.

  4. Self-Assembled Quantum Dot Structure (pyramid)

    02 Feb 2011 | | Contributor(s):: Gerhard Klimeck, Insoo Woo, Muhammad Usman, David S. Ebert

    Pyramidal InAs Quantum dot. The quantum dot is 27 atomic monolayers wide at the base and 15 atomic monolayers tall.

  5. Self-Assembled Quantum Dot Wave Structure

    31 Jan 2011 | | Contributor(s):: Gerhard Klimeck, Insoo Woo, Muhammad Usman, David S. Ebert

    A 20nm wide and 5nm high dome shaped InAs quantum dot grown on GaAs and embedded in InAlAs is visualized.

  6. Semiconductor Device Theory Exercises

    30 Jul 2008 | | Contributor(s):: Dragica Vasileska, Gerhard Klimeck, Mark Lundstrom

    This collection of problems should help the students to better understand Semiconductor Device Physics on a fundamental and more complex level. Crystal lattices and Miller indiciesFrom 1 well to 2 wells to 5 wells to periodic potentialsPeriodic potentials and bandstructureBandstructure...

  7. Solar Cells Lecture 3: Modeling and Simulation of Photovoltaic Devices and Systems

    20 Jul 2011 | | Contributor(s):: J. L. Gray

    Modeling and simulation play an important role in designing and optimizing PV systems. This tutorial is a broad overview of the topic including a look at detailed, numerical device simulation.

  8. Solar Cells Operation and Modeling

    15 Jul 2010 | | Contributor(s):: Dragica Vasileska, Gerhard Klimeck

    This set of slides decribes the basic principles of operation of various generations on solar cells with emphasis to single crystalline solar cells. Next, semiconductor equations that describe the operation of a solar cell under simplified conditions is given. Finally, modeling of single junction...

  9. SPICE Subcircuit Generator for Ferromagnetic Nanomaterials

    11 Jan 2018 | | Contributor(s):: Onur Dincer, Azad Naeemi

    Generates SPICE subcircuit netlist for ferromagnetic nanometarials for spintronic devices

  10. Stories from the NNI: A Platform to Share Nano Simulation Tools - A Conversation with Gerhard Klimeck

    13 Jan 2020 | | Contributor(s):: Gerhard Klimeck, Lisa Friedersdorf

    In this episode of Stories from the NNI, Lisa Friedersdorf, Director of the National Nanotechnology Coordination Office, speaks with Gerhard Klimeck, Professor of Electrical and Computer Engineering at Purdue University and Director of nanoHUB, about an online platform that shares modeling and...

  11. The HUBzero Platform for Scientific Collaboration

    31 Jan 2011 | | Contributor(s):: Michael McLennan

    The framework that powers nanoHUB.org has been released as an open source package known as the HUBzero(r) Platform for Scientific Collaboration.

  12. Thermoelectric Power Factor Calculator for Nanocrystalline Composites

    18 Oct 2008 | | Contributor(s):: Terence Musho, Greg Walker

    Quantum Simulation of the Seebeck Coefficient and Electrical Conductivity in a 2D Nanocrystalline Composite Structure using Non-Equilibrium Green's Functions

  13. Threshold voltage in a nanowire MOSFET

    09 Apr 2010 | | Contributor(s):: Saumitra Raj Mehrotra, SungGeun Kim, Gerhard Klimeck

    Threshold voltage in a metal oxide semiconductor field-effect transistor (better known as a MOSFET) is usually defined as the gate voltage at which an inversion layer forms at the interface between the insulating layer (oxide) and the substrate (body) of the transistor. A MOSFET is said to be...

  14. Tuberculosis Model Incorporating Treatment, Vaccination, and Antibiotic Resistance

    18 Dec 2020 | | Contributor(s):: Antonio Zdanis Neher

    Run though an interactive application to learn more about the consequences of antibiotic resistant pathogens through the lens of Tuberculosis.

  15. Tunneling in an Nanometer-Scaled Transistor

    25 Jan 2011 | | Contributor(s):: Gerhard Klimeck, Mathieu Luisier, Neerav Kharche, George A. Howlett, Insoo Woo, David Ebert

    Electrons tunneling through the gate of an ultra-scaled transistor.

  16. Tutorial 1: Atomistic Material Science - ab initio simulations of materials

    25 Aug 2011 | | Contributor(s):: Alejandro Strachan

    This lecture introduces first principles electronic structure calculations of materials properties.It describes the approximations made to the many-body Schrodinger equation in Hartree Fock and Density Functional Theory and numerical approximations used in computer simulations.

  17. Tutorial 2: Atomistic Material Science - Molecular Dynamics simulations of materials

    25 Aug 2011 | | Contributor(s):: Alejandro Strachan

    This lecture introduces the concept of molecular dynamics (MD) simulations of materials focusing on the physics and approximations underlying the simulations and interpretation of their results.

  18. Understanding COVID-19 Infection, Immune Response, and Drug Therapy through Multiscale, Multicellular Modeling and Simulation

    02 Dec 2020 | | Contributor(s):: T.J. Sego

    This workshop presents an open-source Python- and XML-scripted multiscale modeling and simulation framework of an epithelial tissue infected by a virus, a simplified cellular immune response and viral and immune-induced tissue damage and shows how to use it to model basic patterns of infection...

  19. Understanding Fracture Behavior in Materials Using Cheese

    19 Jun 2018 | | Contributor(s):: Jessica Anne Krogstad, Nicole E Johnson-Glauch, Kaitlin Tyler, Rachael Mansbach, Andrew Ferguson

    This is a resource from the Girls Learning About Materials (GLAM) outreach camp run at the University of Illinois at Urbana-Champaign. The learning objectives for this activity are: Students will compare and contrast different types of fracture behavior (ductile/brittle). Students...

  20. Using nanoHUB to Introduce Elementary and Middle School Students to Models and Simulations

    25 Mar 2014 | | Contributor(s):: Tanya Faltens

    This is a combination hands-on and simulation activity that will teach middle school students about the function and importance of modeling and simulations in science and engineering while learning about three important carbon nanostructures: graphene, bucky balls, and carbon nanotubes. The...