Support

Support Options

Submit a Support Ticket

 

Tags: simulation and modeling of nanoscale transistors/devies

All Categories (1-20 of 29)

  1. Pawan Shantaram Rewatkar

    http://nanohub.org/members/105699

  2. Jeronimo Peralta

    PhD in Physics, University of Buenos AiresResearcher in transport phenomena, device physics.

    http://nanohub.org/members/101149

  3. Hitesh Kamble

    It is difficult to tell you about me. But I could tell you about "'''espacio'''". It means "space" in Spanish language so there are no boundaries. There is no boundary, rule, principle to my life....

    http://nanohub.org/members/93922

  4. Atif Awan

    FROM THE LAND OF PARADISE ON EARTH '''__THE AZAD JAMMU & KASHMIR__'''

    http://nanohub.org/members/83974

  5. Roman Beletsky

    http://nanohub.org/members/80796

  6. julio cesar bolanos

    http://nanohub.org/members/65010

  7. Manuel Toledo

    http://nanohub.org/members/62103

  8. NEMO3D User Guide for Quantum Dot Simulations

    29 Nov 2011 | Papers | Contributor(s): M. Usman, Gerhard Klimeck

    NEMO 3D is a large and complex simulator; and understanding of its source code requires considerable knowledge of quantum mechanics, condensed matter theory, and parallel programming.

    http://nanohub.org/resources/12593

  9. ZAHRA AHANGARI

    http://nanohub.org/members/56016

  10. Quantum Dot Wave Function (Quantum Dot Lab)

    02 Feb 2011 | Animations | Contributor(s): Gerhard Klimeck, David S. Ebert, Wei Qiao

    Electron density of an artificial atom. The animation sequence shows various electronic states in an Indium Arsenide (InAs)/Gallium Arsenide (GaAs) self-assembled quantum dot.

    http://nanohub.org/resources/10751

  11. Self-Assembled Quantum Dot Structure (pyramid)

    02 Feb 2011 | Animations | Contributor(s): Gerhard Klimeck, Insoo Woo, Muhammad Usman, David S. Ebert

    Pyramidal InAs Quantum dot. The quantum dot is 27 atomic monolayers wide at the base and 15 atomic monolayers tall.

    http://nanohub.org/resources/10730

  12. Quantum Dot Wave Function (still image)

    31 Jan 2011 | Animations | Contributor(s): Gerhard Klimeck, David S. Ebert, Wei Qiao

    Electron density of an artificial atom. The image shown displays the excited electron state in an Indium Arsenide (InAs) / Gallium Arsenide (GaAs) self-assembled quantum dot.

    http://nanohub.org/resources/10692

  13. Self-Assembled Quantum Dot Wave Structure

    31 Jan 2011 | Animations | Contributor(s): Gerhard Klimeck, Insoo Woo, Muhammad Usman, David S. Ebert

    A 20nm wide and 5nm high dome shaped InAs quantum dot grown on GaAs and embedded in InAlAs is visualized.

    http://nanohub.org/resources/10689

  14. Electron Density in a Nanowire

    30 Jan 2011 | Animations | Contributor(s): Gerhard Klimeck, Saumitra Raj Mehrotra

    Electron Density in a circular Silicon nanowire transistor.

    http://nanohub.org/resources/10666

  15. Tunneling in an Nanometer-Scaled Transistor

    25 Jan 2011 | Animations | Contributor(s): Gerhard Klimeck, Mathieu Luisier, Neerav Kharche, George A. Howlett, Insoo Woo, David Ebert

    Electrons tunneling through the gate of an ultra-scaled transistor.

    http://nanohub.org/resources/10537

  16. Karim Ahmed Elgammal

    I am a Research Assistant from the Nano Science and Technology Research Center (Modeling and Simulation Research Group) at Nile University, Egypt. as well, I am enrolled as a full-time student in...

    http://nanohub.org/members/47839

  17. Nanoelectronic Modeling Lecture 22: NEMO1D - Motivation, History and Key Insights

    07 Feb 2010 | Online Presentations | Contributor(s): Gerhard Klimeck

    The primary objective of the NEMO-1D tool was the quantitative modeling of high performance Resonant Tunneling Diodes (RTDs). The software tool was intended for Engineers (concepts, fast...

    http://nanohub.org/resources/8389

  18. MOSFet Demonstration: MOSFET Device Simulation and Analysis

    11 Jun 2009 | Animations | Contributor(s): Gerhard Klimeck, Benjamin P Haley

    This video shows the simulation and analysis of a MOSFET device using the MOSFet tool. Several powerful analytic features of this tool are demonstrated.

    http://nanohub.org/resources/6830

  19. OMEN Nanowire Demonstration: Nanowire Simulation and Analysis

    11 Jun 2009 | Animations | Contributor(s): Gerhard Klimeck, Benjamin P Haley

    This video shows the simulation and analysis of a nanowire using OMEN Nanowire. Several powerful analytic features of this tool are demonstrated.

    http://nanohub.org/resources/6833

nanoHUB.org, a resource for nanoscience and nanotechnology, is supported by the National Science Foundation and other funding agencies. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.