Support

Support Options

Submit a Support Ticket

 

Tags: thermal transport

Description

Thermal transport at sub-micron scales differs substantially from that at normal length scales. Physical laws for heat transfer, such as Fourier's law for heat conduction, fail when the mean free path of energy carriers becomes comparable to the length scales of interest. This occurs in modern microelectronic devices, where for example, channel dimensions, now below 100 nm in length, are comparable to the mean free path of phonons in silicon at room temperature. Research in the nanoscale thermal transport area addresses novel physics at small length and time scales and novel technologies that exploit this class of physics.

Learn more about nanoscale thermo transport from the resources available on this site, listed below.

Resources (1-20 of 45)

  1. ECE 595E Lecture 18: FEM for Thermal Transport

    01 Mar 2013 | Online Presentations | Contributor(s): Peter Bermel

    Outline: Recap from Monday Thermal transfer overview Convection Conduction Radiative transfer

    http://nanohub.org/resources/17144

  2. Lecture 9: Introduction to Phonon Transport

    17 Aug 2011 | Online Presentations | Contributor(s): Mark Lundstrom

    This lecture is an introduction to phonon transport. Key similarities and differences between electron and phonon transport are discussed.

    http://nanohub.org/resources/11869

  3. Lecture 5: Thermoelectric Effects - Mathematics

    16 Aug 2011 | Online Presentations | Contributor(s): Mark Lundstrom

    Beginning with the general model for transport, we mathematically derive expressions for the four thermoelectric transport coefficients: (i) Electrical conductivity, (ii) Seebeck coefficient...

    http://nanohub.org/resources/11851

  4. Tutorial 2: Thermal Transport Across Interfaces - Electrons

    16 Aug 2011 | Online Presentations | Contributor(s): Timothy S Fisher

    Outline: Thermal boundary resistance Electronic transport Real interfaces and measurements Carbon nanotube interfaces “Electronics from the Bottom Up” is an educational initiative designed...

    http://nanohub.org/resources/11840

  5. Tutorial 1: Thermal Transport Across Interfaces - Phonons

    15 Aug 2011 | Online Presentations | Contributor(s): Timothy S Fisher

    Outline: Lattice vibrations and phonons The vibrating string Interfaces between dissimilar strings: acoustic mismatch Discrete masses and the vibrational eigenspectrum General thermal...

    http://nanohub.org/resources/11801

  6. Lecture 4: Thermoelectric Effects-Physical Approach

    28 Jul 2011 | Online Presentations | Contributor(s): Mark Lundstrom

    The effect of temperature gradients on current flow and how electrical currents produce heat currents are discussed.

    http://nanohub.org/resources/11747

  7. Tutorial 2: A Bottom-Up View of Heat Transfer in Nanomaterials

    23 Mar 2011 | Online Presentations | Contributor(s): Timothy S Fisher

    This lecture provides a theoretical development of the transport of thermal energy by conduction in nanomaterials. The physical nature of energy transport by two carriers—electrons and...

    http://nanohub.org/resources/11029

  8. Thermal Transport in Nanostructured Materials: Working to Improve Efficiency in the Field of Thermoelectrics

    08 Jul 2010 | Online Presentations | Contributor(s): Suzanne Singer

    This talk discusses the performance of nanostructured thin films as a potential material for thermoelectric energy conversion applications, as well as the material composition variations that...

    http://nanohub.org/resources/9213

  9. Research Within Vasileska Group

    29 Jun 2010 | Online Presentations | Contributor(s): Dragica Vasileska

    This presentation outlines recent progress in reseach within Vasileska group in the area of random telegraph noise and thermal modeling, and modeling of GaN HEMTs.

    http://nanohub.org/resources/9235

  10. Molecular Sensors for MEMS

    10 Dec 2009 | Online Presentations | Contributor(s): John P. Sullivan

    This seminar will cover the issues involved in using molecular sensors in MEMS and their application to microchannels, supersonic micronozzles, microjet impingement, microturbines and unsteady...

    http://nanohub.org/resources/7998

  11. Illinois ME 498 Introduction of Nano Science and Technology, Lecture 10: Thermal and Electric Conduction in Nanostructures

    07 Oct 2009 | Online Presentations | Contributor(s): Nick Fang, Omar N Sobh

    Thermal and Electric Conduction in Nanostructures Topics: Back to Constitutive Equations Coupled Heat and Electron Conduction Thermoelectric Cooling Principle of...

    http://nanohub.org/resources/7526

  12. Metal Oxide Nanowires as Gas Sensing Elements: from Basic Research to Real World Applications

    21 Sep 2009 | Online Presentations | Contributor(s): Andrei Kolmakov

    Quasi 1-D metal oxide single crystal chemiresistors are close to occupy their specific niche in the real world of solid state sensorics. Potentially, the major advantage of this kind of sensors...

    http://nanohub.org/resources/5738

  13. Illinois ECE 598EP Lecture 3.1 - Hot Chips: Electrons and Phonons

    17 Feb 2009 | Online Presentations | Contributor(s): Eric Pop, Omar N Sobh

    Electrons and Phonons

    http://nanohub.org/resources/6270

  14. Illinois ECE 598EP Lecture 1 - Hot Chips: Atoms to Heat Sinks

    29 Jan 2009 | Online Presentations | Contributor(s): Eric Pop

    Introduction Content: The Big Picture Another CPU without a Heat Sink Thermal Management Methods Impact on People and Environment Packaging cost IBM S/390 refrigeration and...

    http://nanohub.org/resources/6184

  15. Quantum and Thermal Effects in Nanoscale Devices

    18 Sep 2008 | Online Presentations | Contributor(s): Dragica Vasileska

    To investigate lattice heating within a Monte Carlo device simulation framework, we simultaneously solve the Boltzmann transport equation for the electrons, the 2D Poisson equation to get the...

    http://nanohub.org/resources/5448

  16. BNC Annual Research Review: An Introduction to PRISM and MEMS Simulation

    04 Jun 2008 | Online Presentations | Contributor(s): Jayathi Murthy

    This presentation is part of a collection of presentations describing the projects, people, and capabilities enhanced by research performed in the Birck Center, and a look at plans for the...

    http://nanohub.org/resources/4717

  17. Nanoscale Opto Thermo Electric Energy Conversion Devices

    28 May 2008 | Online Presentations | Contributor(s): Ali Shakouri

    We review solid-state devices that allow direct conversion of heat into electricity. We describe fundamental and practical limits of conventional thermoelectric materials. Novel...

    http://nanohub.org/resources/4665

  18. Heat Transfer across Solid Contacts Enhanced with Nanomaterials

    11 Feb 2008 | Online Presentations | Contributor(s): Timothy S Fisher

    This presentation will describe thermal transport processes at solid-solid material interfaces. An overview of applications in the electronics industry will serve to motivate the subject, and then...

    http://nanohub.org/resources/3985

  19. An Experimentalists’ Perspective

    19 Dec 2007 | Online Presentations | Contributor(s): Arunava Majumdar

    This presentation was one of 13 presentations in the one-day forum, "Excellence in Computer Simulation," which brought together a broad set of experts to reflect on the future of...

    http://nanohub.org/resources/3628

  20. Microscale Ionic Wind for Local Cooling Enhancement

    26 Oct 2007 | Online Presentations | Contributor(s): David B Go

    As the electronics industry continues to develop small, highly functional, mobile devices, new methods of cooling are required to manage the thermal requirements of the not only the chip but...

    http://nanohub.org/resources/3358

nanoHUB.org, a resource for nanoscience and nanotechnology, is supported by the National Science Foundation and other funding agencies. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.