Tags: thermal transport


Thermal transport at sub-micron scales differs substantially from that at normal length scales. Physical laws for heat transfer, such as Fourier's law for heat conduction, fail when the mean free path of energy carriers becomes comparable to the length scales of interest. This occurs in modern microelectronic devices, where for example, channel dimensions, now below 100 nm in length, are comparable to the mean free path of phonons in silicon at room temperature. Research in the nanoscale thermal transport area addresses novel physics at small length and time scales and novel technologies that exploit this class of physics.

Learn more about nanoscale thermo transport from the resources available on this site, listed below.

Online Presentations (1-20 of 41)

  1. Radiative Heat Transfer at the Nanoscale

    12 Dec 2016 | | Contributor(s):: Pramod Reddy

    In this talk, I will describe ongoing efforts in our group to experimentally elucidate nanoscale heat radiation. Specifically, I will present our recent experimental work where we have addressed the following questions: 1) Can existing theories accurately describe radiative heat transfer in...

  2. Heat Under the Microscope:
 Uncovering the Microscopic Processes that Govern 
Thermal Transport

    04 Oct 2016 | | Contributor(s):: Austin Minnich

    n this talk, I will describe our efforts to uncover the microscopic processes that govern thermal transport by phonons. In particular, I will describe how our advances in computation and experiment have enabled the first direct measurements of thermal phonon transmission coefficients at solid...

  3. Practice Your Scales!
 Thermal and Energy Nanomaterials for Fast Processes

    17 Aug 2016 | | Contributor(s):: Timothy S Fisher

  4. E304 L7.2.2: Nanoscale Heat Transfer - Application: Thermoelectric Generators

    06 May 2016 | | Contributor(s):: Mehmet Cevdet Ozturk

  5. Thermal Conductivity of III-V Semiconductor Superlattices

    25 Jan 2016 | | Contributor(s):: Song Mei, Zlatan Aksamija, Irena Knezevic

    IWCE 2015 presentation.  An InGaAs/InAlAs superlattice (SL) on an InP substrate is the mainstream material system for mid- IR quantum cascade lasers (QCL). The thermal conductivity tensor of SLs is critical for energy-efficient performance of QCLs; understanding the relative importance of...

  6. Thermoreflectance Imaging, Copper Via Reliability and Non- Local Thermal Transport

    05 Mar 2015 | | Contributor(s):: Ali Shakouri

  7. ECE 595E Lecture 18: FEM for Thermal Transport

    01 Mar 2013 | | Contributor(s):: Peter Bermel

    Outline:Recap from MondayThermal transfer overviewConvectionConductionRadiative transfer

  8. Lecture 9: Introduction to Phonon Transport

    17 Aug 2011 | | Contributor(s):: Mark Lundstrom

    This lecture is an introduction to phonon transport. Key similarities and differences between electron and phonon transport are discussed.

  9. Lecture 5: Thermoelectric Effects - Mathematics

    16 Aug 2011 | | Contributor(s):: Mark Lundstrom

    Beginning with the general model for transport, we mathematically deriveexpressions for the four thermoelectric transport coefficients:(i) Electrical conductivity,(ii) Seebeck coefficient (or "thermopower"),(iii) Peltier coefficient,(iv) Electronic heat conductivity.

  10. Tutorial 2: Thermal Transport Across Interfaces - Electrons

    16 Aug 2011 | | Contributor(s):: Timothy S Fisher

    Outline:Thermal boundary resistanceElectronic transportReal interfaces and measurementsCarbon nanotube interfaces

  11. Tutorial 1: Thermal Transport Across Interfaces - Phonons

    15 Aug 2011 | | Contributor(s):: Timothy S Fisher

    Outline:Lattice vibrations and phononsThe vibrating stringInterfaces between dissimilar strings: acousticmismatchDiscrete masses and the vibrational eigenspectrumGeneral thermal transport theory

  12. Lecture 4: Thermoelectric Effects-Physical Approach

    28 Jul 2011 | | Contributor(s):: Mark Lundstrom

    The effect of temperature gradients on current flow and how electrical currents produce heat currents are discussed.

  13. Tutorial 2: A Bottom-Up View of Heat Transfer in Nanomaterials

    23 Mar 2011 | | Contributor(s):: Timothy S Fisher

    This lecture provides a theoretical development of the transport of thermal energy by conduction in nanomaterials. The physical nature of energy transport by two carriers—electrons and phonons--will be explored from basic principles using a common Landauer framework. Issues including the quantum...

  14. Thermal Transport in Nanostructured Materials: Working to Improve Efficiency in the Field of Thermoelectrics

    08 Jul 2010 | | Contributor(s):: Suzanne Singer

    This talk discusses the performance of nanostructured thin films as a potentialmaterial for thermoelectric energy conversion applications, as well as thematerial composition variations that can provide guidelines for finding lowvalues of thermal conductivity.

  15. Research Within Vasileska Group

    29 Jun 2010 | | Contributor(s):: Dragica Vasileska

    This presentation outlines recent progress in reseach within Vasileska group in the area of random telegraph noise and thermal modeling, and modeling of GaN HEMTs.

  16. Molecular Sensors for MEMS

    10 Dec 2009 | | Contributor(s):: John P. Sullivan

    This seminar will cover the issues involved in using molecular sensors in MEMS and their application to microchannels, supersonic micronozzles, microjet impingement, microturbines and unsteady fluidic actuators.

  17. Illinois ME 498 Introduction of Nano Science and Technology, Lecture 10: Thermal and Electric Conduction in Nanostructures

    07 Oct 2009 | | Contributor(s):: Nick Fang, Omar N Sobh

    Thermal and Electric Conduction in Nanostructures Topics: Back to Constitutive Equations Coupled Heat and Electron Conduction Thermoelectric Cooling Principle of Thermoelectric Effect Comparison of Different Materials Challenges in Efficiency Nanoscale Thermoelectricity

  18. Metal Oxide Nanowires as Gas Sensing Elements: from Basic Research to Real World Applications

    21 Sep 2009 | | Contributor(s):: andrei kolmakov

    Quasi 1-D metal oxide single crystal chemiresistors are close to occupy their specific niche in the real world of solid state sensorics. Potentially, the major advantage of this kind of sensors with respect to available granular thin film sensors will be their size and stable, reproducible and...

  19. Illinois ECE 598EP Lecture 3.1 - Hot Chips: Electrons and Phonons

    17 Feb 2009 | | Contributor(s):: Eric Pop, Omar N Sobh

    Electrons and Phonons

  20. Illinois ECE 598EP Lecture 1 - Hot Chips: Atoms to Heat Sinks

    29 Jan 2009 | | Contributor(s):: Eric Pop

    IntroductionContent: The Big Picture Another CPU without a Heat Sink Thermal Management Methods Impact on People and Environment Packaging cost IBM S/390 refrigeration and processor packaging Intel Itanium and Pentium 4packaging Graphics Cards Under/Overclocking Environment A More Detailed Look...