Support

Support Options

Submit a Support Ticket

 

Tags: tight-binding

Description

In solid-state physics, the tight binding model is an approach to the calculation of electronic band structure using an approximate set of wave functions based upon superposition of wave functions for isolated atoms located at each atomic site. The method is closely related to the linear combination of atomic orbitals molecular orbital method used for molecules. Tight binding calculates the ground state electronic energy and position of band gaps for a molecule.

Learn more about quantum dots from the many resources on this site, listed below. More information on Tight binding can be found here.

Resources (1-20 of 28)

  1. OMEN Nanowire

    02 Sep 2008 | Tools | Contributor(s): SungGeun Kim, Mathieu Luisier, Benjamin P Haley, Abhijeet Paul, Saumitra Raj Mehrotra, Gerhard Klimeck

    Full-band 3D quantum transport simulation in nanowire structure

    http://nanohub.org/resources/omenwire

  2. 1D Heterostructure Tool

    04 Aug 2008 | Tools | Contributor(s): Arun Goud Akkala, Sebastian Steiger, Jean Michel D Sellier, Sunhee Lee, Michael Povolotskyi, Tillmann Christoph Kubis, Hong-Hyun Park, Samarth Agarwal, Gerhard Klimeck, James Fonseca, Archana Tankasala

    Poisson-Schrödinger Solver for 1D Heterostructures

    http://nanohub.org/resources/1dhetero

  3. CGTB

    15 Jun 2006 | Tools | Contributor(s): Gang Li, Yang Xu, Narayan Aluru

    Compute the charge density distribution and potential variation inside a MOS structure by using a coarse-grained tight binding model

    http://nanohub.org/resources/cgtb

  4. Quantum Dot Lab

    12 Nov 2005 | Tools | Contributor(s): Prasad Sarangapani, Daniel F Mejia, Andrew Roché, Lars Bjaalie, Sebastian Steiger, David Ebert, Matteo Mannino, Hong-Hyun Park, Tillmann Christoph Kubis, James Fonseca, Michael Povolotskyi, Michael McLennan, Gerhard Klimeck

    Compute the eigenstates of a particle in a box of various shapes including domes, pyramids and multilayer structures.

    http://nanohub.org/resources/qdot

nanoHUB.org, a resource for nanoscience and nanotechnology, is supported by the National Science Foundation and other funding agencies. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.