
OMEN Nanowire Demonstration: Nanowire Simulation and Analysis
11 Jun 2009   Contributor(s):: Gerhard Klimeck, Benjamin P Haley
This video shows the simulation and analysis of a nanowire using OMEN Nanowire. Several powerful analytic features of this tool are demonstrated.

OMEN Nanowire
02 Sep 2008   Contributor(s):: SungGeun Kim, Mathieu Luisier, Benjamin P Haley, Abhijeet Paul, Saumitra Raj Mehrotra, Gerhard Klimeck, Hesameddin Ilatikhameneh
Fullband 3D quantum transport simulation in nanowire structure

Real space firstprinciples semiempirical pseudopotentials for Fe/MgO/Fe
03 Dec 2008   Contributor(s):: Kirk Bevan
A set of semiempirical pseudopotentials for the atomistic modeling of Fe/MgO/Fe tunnel junctions. See the attached document for a full description of their derivation and the modeling approach.Document Abstract:We present a real space density functional theory (DFT) localized basis set...

1D Heterostructure Tool
04 Aug 2008   Contributor(s):: Arun Goud Akkala, Sebastian Steiger, Jean Michel D Sellier, Sunhee Lee, Michael Povolotskyi, Tillmann Christoph Kubis, HongHyun Park, Samarth Agarwal, Gerhard Klimeck, James Fonseca, Archana Tankasala, KuangChung Wang, ChinYi Chen, Fan Chen
PoissonSchrödinger Solver for 1D Heterostructures

Computational Nanoscience, Lecture 17: TightBinding, and Moving Towards Density Functional Theory
21 Mar 2008   Contributor(s):: Elif Ertekin, Jeffrey C Grossman
The purpose of this lecture is to illustrate the application of the TightBinding method to a simple system and then to introduce the concept of Density Functional Theory. The motivation to mapping from a wavefunction to a densitybased description of atomic systems is provided, and the...

Semiconductor Device Education Material
28 Jan 2008   Contributor(s):: Gerhard Klimeck
This page has moved to "a Wiki page format"When we hear the words, semiconductor device, we may think first of the transistors in PCs or video game consoles, but transistors are the basic component in all of the electronic devices we use in our daily lives. Electronic systems are built from...

High Precision Quantum Control of Single Donor Spins in Silicon
14 Jan 2008   Contributor(s):: Rajib Rahman, marta prada, Gerhard Klimeck, Lloyd Hollenberg
The Stark shift of the hyperfine coupling constant is investigated for a P donor in Si far below the ionization regime in the presence of interfaces using tightbinding and band minima basis approaches and compared to the recent precision measurements. In contrast with previous effective...

Valley splitting in strained silicon quantum wells modeled with 2 degree miscuts, step disorder, and alloy disorder
14 Jan 2008   Contributor(s):: Neerav Kharche, marta prada, Timothy Boykin, Gerhard Klimeck
Valley splitting (VS) in strained SiGe/Si/SiGe quantum wells grown on (001) and 2° miscut substrates is computed in a magnetic field. Calculations of flat structures significantly overestimate, while calculations of perfectly ordered structures underestimate experimentally observed VS. Step...

Atomistic Electronic Structure Calculations of Unstrained Alloyed Systems Consisting of a Million Atoms
14 Jan 2008   Contributor(s):: Gerhard Klimeck, Timothy Boykin
The broadening of the conduction and valence band edges due to compositional disorder in alloyed materials of finite extent is studied using an s p3 s ∗ tight binding model. Two sources of broadening due to configuration and concentration disorder are identified. The concentrational disorder...

Quantum Dot Lab Learning Module: An Introduction
02 Jul 2007   Contributor(s):: James K Fodor, Jing Guo
THIS MATERIAL CORRESPONDS TO AN OLDER VERSION OF QUANTUM DOT LAB THAN CURRENTLY AVAILABLE ON nanoHUB.org.

Vidur Vidur
http://nanohub.org/members/20084

CGTB
15 Jun 2006   Contributor(s):: Gang Li, yang xu, Narayan Aluru
Compute the charge density distribution and potential variation inside a MOS structure by using a coarsegrained tight binding model

Quantum Dot Lab
12 Nov 2005   Contributor(s):: Prasad Sarangapani, James Fonseca, Daniel F Mejia, James Charles, Woody Gilbertson, Tarek Ahmed Ameen, Hesameddin Ilatikhameneh, Andrew Roché, Lars Bjaalie, Sebastian Steiger, David Ebert, Matteo Mannino, HongHyun Park, Tillmann Christoph Kubis, Michael Povolotskyi, Michael McLennan, Gerhard Klimeck
Compute the eigenstates of a particle in a box of various shapes including domes, pyramids and multilayer structures.

Gerhard Klimeck
ShortGerhard Klimeck is an Electrical and Computer Engineering faculty at Purdue University and leads two research centers in Purdue's Discovery Park. He helped to create nanoHUB.org which now...
http://nanohub.org/members/3482