
ECE 612 Lecture 4: Polysilicon Gates/QM Effects
12 Sep 2008   Contributor(s):: Mark Lundstrom
Outline: 1) Review, 2) Workfunctionof poly gates,3) CV with poly depletion,4) Quantum mechanics and VT,5) Quantum mechanics and C,6) Summary.

ECE 612 Introductory Lecture
10 Sep 2008   Contributor(s):: Mark Lundstrom

Lecture 3A: The Ballistic MOSFET
10 Sep 2008   Contributor(s):: Mark Lundstrom
The IV characteristic of the ballistic MOSFET is formally derived. When Boltzmann statistics are assumed, the model developed here reduces to the one presented in Lecture 2. There is no new physics in this lecture  just a proper mathematical derivation of the approach that was developed...

Lecture 3B: The Ballistic MOSFET
10 Sep 2008   Contributor(s):: Mark Lundstrom
This lecture is a continuation of part 3A. After discussion some bandstructure considerations, it describes how 2D and subthreshold electrostatics are included in the ballistic model.

Physics of Nanoscale Transistors: An Introduction to Electronics from the Bottom Up
10 Sep 2008   Contributor(s):: Mark Lundstrom
Transistor scaling has pushed channel lengths to the nanometer regime, and advances in nanoscience have opened up many new possibilities for devices. To realize these opportunities, our traditional understanding of electronic devices needs to be complemented with a new perspective that begins...

ECE 612 Lecture 3: MOS Capacitors
09 Sep 2008   Contributor(s):: Mark Lundstrom
Outline: 1) Short review,2) Gate voltage / surface potential relation,3) The flatbandvoltage,4) MOS capacitance vs. voltage, 5) Gate voltage and inversion layer charge.

ECE 612 Lecture 2: 1D MOS Electrostatics II
09 Sep 2008   Contributor(s):: Mark Lundstrom
Outline: 1) Review,2) ‘Exact’ solution (bulk), 3) Approximate solution (bulk), 4) Approximate solution (ultrathin body), 5) Summary.

ECE 612 Lecture 1: 1D MOS Electrostatics I
09 Sep 2008   Contributor(s):: Mark Lundstrom
Outline: 1) Review of some fundamentals,2) Identify next steps.

Lecture 2: Elementary Theory of the Nanoscale MOSFET
08 Sep 2008   Contributor(s):: Mark Lundstrom
A very simple (actually overly simple) treatment of the nanoscale MOSFET. This lecture conveys the essence of the approach using only simple mathematics. It sets the stage for the subsequent lectures.

Lecture 4: Scattering in Nanoscale MOSFETs
08 Sep 2008   Contributor(s):: Mark Lundstrom
No MOSFET is ever fully ballistic  there is always some carrier scattering. Scattering makes the problem complicated and requires detailed numerical simulations to treat properly. My objective in this lecture is to present a simple, physical picture that describes the essence of the problem and...

Lecture 5: Application to StateoftheArt FETs
08 Sep 2008   Contributor(s):: Mark Lundstrom
The previous lessons may seem a bit abstract and mathematical. To see how this all works, we examine measured data and show how the theory presented in the previous lessons help us understand the operation of modern FETs.

ECE 495N Lecture 2: Quantum of Conductance
02 Sep 2008   Contributor(s):: Supriyo Datta

ECE 495N Lecture 1: What Makes Current Flow?
28 Aug 2008   Contributor(s):: Supriyo Datta

Introduction: Physics of Nanoscale MOSFETs
26 Aug 2008   Contributor(s):: Mark Lundstrom

Lecture 1: Review of MOSFET Fundamentals
26 Aug 2008   Contributor(s):: Mark Lundstrom
A quick review of the traditional theory of the MOSFET along with a review of key device performance metrics. A short discussion of the limits of the traditional (driftdiffusion) approach and the meaning of ballistic transport is also included.

The Effect of Physical Geometry on the Frequency Response of Carbon Nanotube FieldEffect Transistors
03 Aug 2007   Contributor(s):: Dave Lyzenga
In order for carbon nanotube (CNT) electrical devices to be fabricated, it is necessary to obtain modifiable operation characteristics. Developing parametric equations to achieve this controllability in the vertical fieldeffect transistor (FET) design is an important first step toward...