
Lecture 3B: The Ballistic MOSFET
10 Sep 2008  Online Presentations  Contributor(s): Mark Lundstrom
This lecture is a continuation of part 3A. After discussion some bandstructure considerations, it describes how 2D and subthreshold electrostatics are included in the ballistic model.
http://nanohub.org/resources/5310

Physics of Nanoscale Transistors: An Introduction to Electronics from the Bottom Up
10 Sep 2008  Online Presentations  Contributor(s): Mark Lundstrom
Transistor scaling has pushed channel lengths to the nanometer regime, and advances in nanoscience have opened up many new possibilities for devices. To realize these opportunities, our...
http://nanohub.org/resources/5207

ECE 612 Lecture 3: MOS Capacitors
09 Sep 2008  Online Presentations  Contributor(s): Mark Lundstrom
Outline: 1) Short review,
2) Gate voltage / surface potential relation,
3) The flatbandvoltage,
4) MOS capacitance vs. voltage,
5) Gate voltage and inversion layer charge.
http://nanohub.org/resources/5363

ECE 612 Lecture 2: 1D MOS Electrostatics II
09 Sep 2008  Online Presentations  Contributor(s): Mark Lundstrom
Outline: 1) Review,
2) ‘Exact’ solution (bulk),
3) Approximate solution (bulk),
4) Approximate solution (ultrathin body),
5) Summary.
http://nanohub.org/resources/5362

ECE 612 Lecture 1: 1D MOS Electrostatics I
09 Sep 2008  Online Presentations  Contributor(s): Mark Lundstrom
Outline: 1) Review of some fundamentals,
2) Identify next steps.
http://nanohub.org/resources/5341

Lecture 2: Elementary Theory of the Nanoscale MOSFET
08 Sep 2008  Online Presentations  Contributor(s): Mark Lundstrom
A very simple (actually overly simple) treatment of the nanoscale MOSFET. This lecture conveys the essence of the approach using only simple mathematics. It sets the stage for the subsequent...
http://nanohub.org/resources/5308

Lecture 4: Scattering in Nanoscale MOSFETs
08 Sep 2008  Online Presentations  Contributor(s): Mark Lundstrom
No MOSFET is ever fully ballistic  there is always some carrier scattering. Scattering makes the problem complicated and requires detailed numerical simulations to treat properly. My objective...
http://nanohub.org/resources/5311

Lecture 5: Application to StateoftheArt FETs
08 Sep 2008  Online Presentations  Contributor(s): Mark Lundstrom
The previous lessons may seem a bit abstract and mathematical. To see how this all works, we examine measured data and show how the theory presented in the previous lessons help us understand the...
http://nanohub.org/resources/5312

ECE 495N Lecture 2: Quantum of Conductance
02 Sep 2008  Online Presentations  Contributor(s): Supriyo Datta
http://nanohub.org/resources/5355

ECE 495N Lecture 1: What Makes Current Flow?
28 Aug 2008  Online Presentations  Contributor(s): Supriyo Datta
http://nanohub.org/resources/5345

Introduction: Physics of Nanoscale MOSFETs
26 Aug 2008  Online Presentations  Contributor(s): Mark Lundstrom
NCN@Purdue Summer School 2008
National Science Fondation
Intel Corporation
NCN@Purdue Summer School 2008
National Science Fondation
Intel Corporation
http://nanohub.org/resources/5317

Lecture 1: Review of MOSFET Fundamentals
26 Aug 2008  Online Presentations  Contributor(s): Mark Lundstrom
A quick review of the traditional theory of the MOSFET along with a review of key device performance metrics. A short discussion of the limits of the traditional (driftdiffusion) approach and...
http://nanohub.org/resources/5307

The Effect of Physical Geometry on the Frequency Response of Carbon Nanotube FieldEffect Transistors
03 Aug 2007  Online Presentations  Contributor(s): Dave Lyzenga
In order for carbon nanotube (CNT) electrical devices to be fabricated, it is necessary to obtain modifiable operation characteristics. Developing parametric equations to achieve this...
http://nanohub.org/resources/3044