Tags: transistors

Description

A transistor is a semiconductor device used to amplify and switch electronic signals. It is made of a solid piece of semiconductor material, with at least three terminals for connection to an external circuit. A voltage or current applied to one pair of the transistor's terminals changes the current flowing through another pair of terminals. Because the controlled (output) power can be much more than the controlling (input) power, the transistor provides amplification of a signal.More information on Transistor can be found here.

Papers (1-7 of 7)

  1. Electron Transport in Schottky Barrier CNTFETs

    24 Oct 2017 | Papers | Contributor(s): Igor Bejenari

    A given review describes models based on Wentzel-Kramers-Brillouin approximation, which are used to obtain I-V characteristics for ballistic CNTFETs with Schottky-Barrier (SB) contacts....

    http://nanohub.org/resources/27514

  2. Efficiency Enhancement for Nanoelectronic Transport Simulations

    02 Feb 2014 | Papers | Contributor(s): Jun Huang

    PhD thesis of Jun Huang Continual technology innovations make it possible to fabricate electronic devices on the order of 10nm. In this nanoscale regime, quantum physics becomes critically...

    http://nanohub.org/resources/20248

  3. Modeling Quantum Transport in Nanoscale Transistors

    28 Jun 2013 | Papers | Contributor(s): Ramesh Venugopal

    As critical transistor dimensions scale below the 100 nm (nanoscale) regime, quantum mechanical effects begin to manifest themselves and affect important device performance metrics. Therefore,...

    http://nanohub.org/resources/18744

  4. Physics and Simulation of Quasi-Ballistic Transport in Nanoscale Transistors

    28 Jun 2013 | Papers | Contributor(s): Jung-Hoon Rhew

    The formidable progress in microelectronics in the last decade has pushed the channel length of MOSFETs into decanano scale and the speed of BJTs into hundreds of gigahertz. This progress imposes...

    http://nanohub.org/resources/18747

  5. Computational and Experimental Study of Transport in Advanced Silicon Devices

    28 Jun 2013 | Papers | Contributor(s): Farzin Assad

    In this thesis, we study electron transport in advanced silicon devices by focusing on the two most important classes of devices: the bipolar junction transistor (BJT) and the MOSFET. In regards...

    http://nanohub.org/resources/18769

  6. Theory and characterization of random defect formation and its implication in variability of nanoscale transistors

    30 Sep 2011 | Papers | Contributor(s): Ahmad Ehteshamul Islam

    Over the last 50 years, carrier transport has been the central research topic in the semiconductor area. The outcome was a dramatic improvement in the performance of a transistor, which is one of...

    http://nanohub.org/resources/12182

  7. Multiple Transfers of Single-Walled Carbon Nanotubes on Silicon Wafers

    20 Mar 2009 | Papers | Contributor(s): Alan Salvador Teran

    Single-walled carbon nanotubes (SWCNTs) have many applications, including high speed transistor devices (see Figure 1). SWCNTs are grown on single-crystal quartz wafers and then transferred onto...

    http://nanohub.org/resources/6504