Tags: transistors

Description

A transistor is a semiconductor device used to amplify and switch electronic signals. It is made of a solid piece of semiconductor material, with at least three terminals for connection to an external circuit. A voltage or current applied to one pair of the transistor's terminals changes the current flowing through another pair of terminals. Because the controlled (output) power can be much more than the controlling (input) power, the transistor provides amplification of a signal.More information on Transistor can be found here.

Resources (221-240 of 295)

  1. ECE 606 Lecture 12: Equilibrium Concentrations

    16 Feb 2009 | | Contributor(s):: Muhammad A. Alam

    Outline:Carrier concentrationTemperature dependence of carrier concentrationMultiple doping, co-doping, and heavy-dopingConclusion

  2. ECE 606 Lecture 11: Equilibrium Statistics

    16 Feb 2009 | | Contributor(s):: Muhammad A. Alam

    Outline:Law of mass-action & intrinsic concentration Statistics of donors and acceptor levelsConclusion

  3. ECE 606 Lecture 10: Additional Information

    16 Feb 2009 | | Contributor(s):: Muhammad A. Alam

    Outline:Potential, field, and chargeE-k diagram vs. band-diagramBasic concepts of donors and acceptorsConclusion

  4. ECE 606 Lecture 13a: Fermi Level Differences for Metals and Semiconductors

    16 Feb 2009 | | Contributor(s):: Muhammad A. Alam

    Short chalkboard lecture on Fermi level and band diagram differences for metals and semiconductors.

  5. ECE 659 Lecture 10: Two-Probe/Four-Probe

    05 Feb 2009 | | Contributor(s):: Supriyo Datta

  6. ECE 659 Lecture 9: Landauer-Buttiker Formalism

    05 Feb 2009 | | Contributor(s):: Supriyo Datta

  7. ECE 606 Lecture 9: Fermi-Dirac Statistics

    04 Feb 2009 | | Contributor(s):: Muhammad A. Alam

    Outline:Rules of filling electronic statesDerivation of Fermi-Dirac Statistics: three techniquesIntrinsic carrier concentrationConclusion

  8. ECE 606 Lecture 8: Density of States

    04 Feb 2009 | | Contributor(s):: Muhammad A. Alam

    Outline:Calculation of density of statesDensity of states for specific materialsCharacterization of Effective MassConclusions

  9. ECE 606 Lecture 7: Energy Bands in Real Crystals

    04 Feb 2009 | | Contributor(s):: Muhammad A. Alam

    Outline:E-k diagram/constant energy surfaces in 3D solidsCharacterization of E-k diagram: BandgapCharacterization of E-k diagram: Effective MassConclusions

  10. ECE 606 Lecture 5: Energy Bands

    04 Feb 2009 | | Contributor(s):: Muhammad A. Alam

    Outline:Schrodinger equation in periodic U(x)Bloch theoremBand structureProperties of electronic bandsConclusions

  11. ECE 606 Lecture 6: Energy Bands (continued)

    04 Feb 2009 | | Contributor(s):: Muhammad A. Alam

    Outline:Properties of electronic bandsE-k diagram and constant energy surfacesConclusions

  12. ECE 606 Lecture 4: Solution of Schrodinger Equation

    04 Feb 2009 | | Contributor(s):: Muhammad A. Alam

    Outline:Time-independent Schrodinger EquationAnalytical solution of toy problemsBound vs. tunneling statesConclusionsAdditional Notes: Numerical solution of Schrodinger Equation

  13. ECE 659 Lecture 8: Scattering Theory of Transport

    03 Feb 2009 | | Contributor(s):: Supriyo Datta

  14. ECE 659 Lecture 7: Hall Effect II

    03 Feb 2009 | | Contributor(s):: Supriyo Datta

  15. ECE 659 Lecture 6: Hall Effect I

    03 Feb 2009 | | Contributor(s):: Supriyo Datta

  16. ECE 606 Lecture 3: Elements of Quantum Mechanics

    28 Jan 2009 | | Contributor(s):: Muhammad A. Alam

    Outline:Why do we need quantum physicsQuantum conceptsFormulation of quantum mechanicsConclusions

  17. ECE 606 Lecture 2: Geometry of Periodic Crystals

    28 Jan 2009 | | Contributor(s):: Muhammad A. Alam

    Outline:Volume & surface issues for BCC, FCC, Cubic latticesImportant material systemsMiller indices ConclusionsHelpful software tool: Crystal Viewer in the ABACUS tool suite.

  18. ECE 606 Lecture 1: Introduction

    28 Jan 2009 | | Contributor(s):: Muhammad A. Alam

    Outline:Course information Current flow in semiconductors Types of material systems Classification of crystals

  19. ECE 659 Quantum Transport: Atom to Transistor

    27 Jan 2009 | | Contributor(s):: Supriyo Datta

    Spring 2009 This is a newly produced version of the course that was formerly available. We would greatly appreciate your feedback regarding the new format and contents. Traditionally atomistic approaches have been used to model materials in terms of average parameters like the...

  20. ECE 659 Lecture 5: Where is the Resistance?

    27 Jan 2009 | | Contributor(s):: Supriyo Datta