Please help us continue to improve nanoHUB operation and service by completing our survey - http://bit.ly/nH-survey14. Thank you - we appreciate your time. close

Support

Support Options

Submit a Support Ticket

 

Tags: transport classical

Resources (1-11 of 11)

  1. From Semi-Classical to Quantum Transport Modeling: Quantum Corrections to Semiclassical Approaches

    10 Aug 2009 | Teaching Materials | Contributor(s): Dragica Vasileska

    This set of powerpoint slides series provides insight on what are the tools available for modeling devices that behave either classically or quantum-mechanically. An in-depth description is...

    http://nanohub.org/resources/7216

  2. Homework Exercise on Bipolar Junction Transistors

    30 Mar 2008 | Teaching Materials | Contributor(s): Saumitra Raj Mehrotra, Muhammad A. Alam, Gerhard Klimeck

    The tutorial questions are based on the Bipolar Junction Transistor Lab v1.0 available online at Bipolar Junction Transistor Lab. Students are asked to find the emitter efficiency, the base...

    http://nanohub.org/resources/4185

  3. Homework Exercise on Drift & Diffusion in Bulk Semiconductors

    30 Mar 2008 | Teaching Materials | Contributor(s): Saumitra Raj Mehrotra, Gerhard Klimeck

    The tutorial questions based on Drift Diffusion Lab v1.0 available online at Drift Diffusion Lab. Students are asked to explore the concepts of Drift, Diffusion, Quasi Fermi Levels, and response...

    http://nanohub.org/resources/4188

  4. Homework Exercise on Drift & Diffusion in Bulk Semiconductors - considerations of lifetime

    30 Mar 2008 | Teaching Materials | Contributor(s): Mark Lundstrom, Saumitra Raj Mehrotra

    The tutorial questions based on Drift Diffusion Lab v1.0 available online at Drift Diffusion Lab. Students are asked to explore the concepts of Drift, Diffusion, Quasi Fermi Levels, and response...

    http://nanohub.org/resources/4191

nanoHUB.org, a resource for nanoscience and nanotechnology, is supported by the National Science Foundation and other funding agencies. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.