Tags: drift-diffusion

All Categories (41-60 of 77)

  1. How Quantum-Mechanical Space-Quantization is Implemented in Schred, Drift-Diffusion (SILVACO ATLAS) and Particle-Based Device Simulators (Quamc2D)

    27 Jul 2008 | | Contributor(s):: Dragica Vasileska

    This brief presentation outlines how one can implement quantum-mechanical space quantization effects exactly (using Schred) and approximately in drift-diffusion (using SILVACO), as well as particle-based device simulators (using Quamc2D).

  2. Introduction to DD Modeling with PADRE

    02 Jun 2006 | | Contributor(s):: Dragica Vasileska

    Silvaco/PADRE Description and Application to Device Simulation

  3. Kyle M Sundqvist

    Kyle Sundqvist received BS degrees in physics and astronomy from the University of Washington, Seattle. He is currently a PhD student in the Physics Department at the University of California,...

    https://nanohub.org/members/9950

  4. Lecture 1: Review of MOSFET Fundamentals

    26 Aug 2008 | | Contributor(s):: Mark Lundstrom

    A quick review of the traditional theory of the MOSFET along with a review of key device performance metrics. A short discussion of the limits of the traditional (drift-diffusion) approach and the meaning of ballistic transport is also included.

  5. Medici

    13 May 2004 | | Contributor(s):: Steven Clark

    MEDICI (Synopsys)

  6. MOSFet

    30 Mar 2006 | | Contributor(s):: Shaikh S. Ahmed, Saumitra Raj Mehrotra, SungGeun Kim, Matteo Mannino, Gerhard Klimeck, Dragica Vasileska, Xufeng Wang, Himadri Pal, Gloria Wahyu Budiman

    Simulates the current-voltage characteristics for bulk, SOI, and double-gate Field Effect Transistors (FETs)

  7. MOSFet Demonstration: MOSFET Device Simulation and Analysis

    03 Jun 2009 | | Contributor(s):: Gerhard Klimeck, Benjamin P Haley

    This video shows the simulation and analysis of a MOSFET device using the MOSFet tool. Several powerful analytic features of this tool are demonstrated.

  8. MOSFet: First-Time User Guide

    13 Jun 2009 | | Contributor(s):: Saumitra Raj Mehrotra, Benjamin P Haley

    This first-time user guide provides introductory material to MOSFet on nanoHUB. The introduction to MOSFETs and SOI-MOSFETs is followed by a tour of the Rappture interface, which notes key inputs and typical outputs. We discuss the default simulation (what happens if you don't change any inputs,...

  9. MuGFET: First-Time User Guide

    28 Apr 2008 | | Contributor(s):: SungGeun Kim, Sriraman Damodaran, Benjamin P Haley, Gerhard Klimeck

    MuGFET is a simulation tool for nano-scale multi-gate FET structures.This document provides instructions on how to use MuGFET. MuGFET users can use also the PROPHET or the PADRE tool. Either of these provide self-consistent solutions to the Poisson and drift-diffusion equation.At the nanometer...

  10. May 02 2022

    nanoHUB Recitation Series for Semiconductor Education and Workforce Development: Drift-Diffusion-Lab with Bias and Light

    Abstract: In the fourth session, Dr. Gerhard Klimeck will give a brief overview of ABACUS and demonstrate the Drift-Diffusion-Lab. Students can experiment with a semiconductor slab under bias...

    https://nanohub.org/events/details/2173

  11. Jan 12 2022

    nanoHUB Recitation Series for Semiconductor Education: Drift-Diffusion-Lab with Bias and Light

    Series Information: Recent economic needs have re-kindled national and global interest in semiconductor devices and created an urgent need for  more semiconductor device engineers and...

    https://nanohub.org/events/details/2116

  12. NanoMOS

    19 May 2006 | | Contributor(s):: , Sebastien Goasguen, Akira Matsudaira, Shaikh S. Ahmed, Kurtis Cantley, Yang Liu, Yunfei Gao, Xufeng Wang, Mark Lundstrom

    2-D simulator for thin body (less than 5 nm), fully depleted, double-gated n-MOSFETs

  13. Nanotechnology Animation Gallery

    20 Apr 2010 | | Contributor(s):: Saumitra Raj Mehrotra, Gerhard Klimeck

    Animations and visualization are generated with various nanoHUB.org tools to enable insight into nanotechnology and nanoscience. Click on image for detailed description and larger image download. Additional animations are also...

  14. Near-Equilibrium Transport Fundamentals and Applications

    30 Jan 2022 | | Contributor(s):: Mark Lundstrom, Changwook Jeong

    These lectures are designed to introduce students to the fundamentals of carrier transport in nano-devices using a novel, “bottom up approach” that agrees with traditional methods when devices are large, but which also works for nano-devices.

  15. Numerical solution of the Drift-Diffusion Equations for a diode

    28 May 2010 | | Contributor(s):: Dragica Vasileska

    This material describes the implementation and also gives the source code for the numerical solution of the Drift-Diffusion equations for a PN Diode. The code can be easily generalized for any 2D or 3D device.

  16. Padre

    12 Jan 2006 | | Contributor(s):: Mark R. Pinto, kent smith, Muhammad A. Alam, Steven Clark, Xufeng Wang, Gerhard Klimeck, Dragica Vasileska

    2D/3D devices under steady state, transient conditions or AC small-signal analysis

  17. Physics of Nanoscale MOSFETs

    26 Aug 2008 | | Contributor(s):: Mark Lundstrom

    Transistor scaling has pushed channel lengths to the nanometer regime where traditional approaches to MOSFET device physics are less and less suitable This short course describes a way of understanding MOSFETs that is much more suitable than traditional approaches when the channel lengths are of...

  18. PN Junction Lab

    12 Sep 2005 | | Contributor(s):: Dragica Vasileska, Matteo Mannino, Michael McLennan, Xufeng Wang, Gerhard Klimeck, Saumitra Raj Mehrotra, Benjamin P Haley

    This tool enables users to explore and teach the basic concepts of P-N junction devices.

  19. PN Junction Lab (New Interactive Front End)

    16 Aug 2019 | | Contributor(s):: Daniel Mejia, Gerhard Klimeck

    Visualize and explore P-N junction concepts fully interactively: Band Edge Diagrams, Charge Densities, I-V and C-V Characteristics

  20. PN Junction Lab Demonstration: Asymmetric PN Junctions

    03 Jun 2009 | | Contributor(s):: Gerhard Klimeck, Benjamin P Haley

    This video shows the simulation and analysis of a several PN junctions using PN Junction Lab, which is powered by PADRE. Several powerful analytic features of this tool are demonstrated.