Tags: transport/quantum

Resources (21-40 of 57)

  1. Introduction: Nanoelectronics and the meaning of resistance

    20 Aug 2008 | | Contributor(s):: Supriyo Datta

    This lecture provides a brief overview of the five-day short course whose purpose is to introduce a unified viewpoint for a wide variety of nanoscale electronic devices of great interest for all kinds of applications including switching, energy conversion and sensing. Our objective, however, is...

  2. Lecture 1A: What and where is the resistance?

    20 Aug 2008 | | Contributor(s):: Supriyo Datta

    Objective: To introduce a simple quantitative model that highlights the essential parameters that determine electrical conduction: the density of states in the channel, D and the rates at which electrons hop in and out of the two contacts, labeled source and drain. This model is used to explain...

  3. Lecture 1B: What and where is the resistance?

    20 Aug 2008 | | Contributor(s):: Supriyo Datta

    Objective: To introduce a simple quantitative model that highlights the essential parameters that determine electrical conduction: the density of states in the channel, D and the rates at which electrons hop in and out of the two contacts, labeled source and drain. This model is used to explain...

  4. Lecture 2A: Quantum Transport

    20 Aug 2008 | | Contributor(s):: Supriyo Datta

    Objective: To extend the simple model from Lectures 1 into the full-fledged Non-equilibrium Green’s Function (NEGF) – Landauer model by introducing a spatial grid of N points and turning numbers like into (NxN) matrices like , with incoherent scattering introduced through . This model will be...

  5. Lecture 2B: Quantum Transport

    20 Aug 2008 | | Contributor(s):: Supriyo Datta

    Objective: To extend the simple model from Lectures 1 into the full-fledged Non-equilibrium Green’s Function (NEGF) – Landauer model by introducing a spatial grid of N points and turning numbers like into (NxN) matrices like , with incoherent scattering introduced through . This model will be...

  6. Lecture 3A: Spin Transport

    20 Aug 2008 | | Contributor(s):: Supriyo Datta

    Objective: To extend the model from Lectures 1 and 2 to include electron spin. Every electron is an elementary “magnet” with two states having opposite magnetic moments. Usually this has no major effect on device operation except to increase the conductance by a factor of two.But it is now...

  7. Lecture 3B: Spin Transport

    20 Aug 2008 | | Contributor(s):: Supriyo Datta

    Objective: To extend the model from Lectures 1 and 2 to include electron spin. Every electron is an elementary “magnet” with two states having opposite magnetic moments. Usually this has no major effect on device operation except to increase the conductance by a factor of two.But it is now...

  8. Lecture 4B: Energy Exchange and Maxwell’s Demon

    20 Aug 2008 | | Contributor(s):: Supriyo Datta

    Objective: To incorporate distributed energy exchange processes into the previous models from lectures 1 through 3 which are based on a “Landauer-like picture” where the Joule heating associated with current flow occurs entirely in the two contacts.Although there is experimental evidence that...

  9. Lecture 5A: Correlations and Entanglement

    20 Aug 2008 | | Contributor(s):: Supriyo Datta

    Objective: To relate the one-electron picture used throughout these lectures to the more general but less tractable many-particle picture that underlies it. We introduce this new viewpoint using the example of Coulomb blockaded electronic devices that are difficult to model within the picture...

  10. Lecture 5B: Correlations and Entanglement

    20 Aug 2008 | | Contributor(s):: Supriyo Datta

    Objective: To relate the one-electron picture used throughout these lectures to the more general but less tractable many-particle picture that underlies it. We introduce this new viewpoint using the example of Coulomb blockaded electronic devices that are difficult to model within the picture...

  11. Nanoelectronics and the Meaning of Resistance

    20 Aug 2008 | | Contributor(s):: Supriyo Datta

    The purpose of this series of lectures is to introduce the "bottom-up" approach to nanoelectronics using concrete examples. No prior knowledge of quantum mechanics or statistical mechanics is assumed; however, familiarity with matrix algebra will be helpful for some topics. Day 1: What...

  12. ABACUS - Assembly of Basic Applications for Coordinated Understanding of Semiconductors

    16 Jul 2008 | | Contributor(s):: Xufeng Wang, Dragica Vasileska, Gerhard Klimeck

    One-stop-shop for teaching semiconductor device education

  13. Finite Height Quantum Well: an Exercise for Band Structure

    31 Jan 2008 | | Contributor(s):: David K. Ferry

    Use the Resonant Tunneling Diodes simulation tool on nanoHUB to explore the effects of finite height quantum wells.Looking at a 2 barrier device, 300 K, no bias, other standard variables, and 3 nm thick barriers and a 7 nm quantum well, determine the energies of the two lowest quasi-bound states.

  14. Electron-Phonon and Electron-Electron Interactions in Quantum Transport

    14 Jan 2008 | | Contributor(s):: Gerhard Klimeck

    The objective of this work is to shed light on electron transport through sub-micron semi-conductor structures, where electronic state quantization, electron-electron interactions and electron-phonon interactions are important. We concentrate here on the most developed vertical quantum device,...

  15. Engineering at the nanometer scale: Is it a new material or a new device?

    06 Nov 2007 | | Contributor(s):: Gerhard Klimeck

    This seminar will overview NEMO 3D simulation capabilities and its deployment on the nanoHUB as well as an overview of the nanoHUB impact on the community.

  16. Quantum Ballistic Transport in Semiconductor Heterostructures

    27 Aug 2007 | | Contributor(s):: Michael McLennan

    The development of epitaxial growth techniques has sparked a growing interest in an entirely quantum mechanical description of carrier transport. Fabrication methods, such as molecular beam epitaxy (MBE), allow for growth of ultra-thin layers of differing material compositions. Structures can be...

  17. Orbital Mediated Tunneling in a New Unimolecular Rectifier

    25 May 2007 | | Contributor(s):: Robert Metzger, NCN at Northwestern University

    In 1997 we showed that hexadecylquinolinium tricyanoquinodimethanide is a unimolecular rectifier, by scanning tunneling microscopy and also as a Langmuir-Blodgett (LB) monolayer, sandwiched between Al electrodes. We have now seen rectification in a new molecule: this rectification can be...

  18. Pan American Advanced Study Institute Lectures: Nanodevices and Maxwell’s Demon

    14 Jun 2007 | | Contributor(s):: Supriyo Datta

    Pan AmericanAdvanced Study Institute (PASI) Lectures: Nanodevices and Maxwell's DemonThis is a video taped set of two one-hour live lectures covering roughly the same material as Lectures 1-3 of Concepts of Quantum Transport.

  19. PASI Lecture: Nanodevices and Maxwell's Demon, Part 2

    14 Jun 2007 | | Contributor(s):: Supriyo Datta

    Pan AmericanAdvanced Study Institute (PASI) Lectures.This is part 2 of a video taped set of two one-hour live lectures covering roughly the same material as Lectures 1-3 of Concepts of Quantum Transport.

  20. PASI Lecture: Nanodevices and Maxwell's Demon, Part 1

    13 Jun 2007 | | Contributor(s):: Supriyo Datta

    Pan AmericanAdvanced Study Institute (PASI) Lectures.This is part 1 of a video taped set of two one-hour live lectures covering roughly the same material as Lectures 1-3 of Concepts of Quantum Transport.