Tags: tunneling

Online Presentations (1-20 of 26)

  1. Atomistic Modeling of Nano Devices: From Qubits to Transistors

    13 Apr 2016 | | Contributor(s):: Rajib Rahman

    In this talk, I will describe such a framework that can capture complex interactions ranging from exchange and spin-orbit-valley coupling in spin qubits to non-equilibrium charge transport in tunneling transistors. I will show how atomistic full configuration interaction calculations of exchange...

  2. Auger Generation as an Intrinsic Limit to Tunneling Field-Effect Transistor Performance

    22 Sep 2016 | | Contributor(s):: Jamie Teherani

    Many in the microelectronics field view tunneling field-effect transistors (TFETs) as society’s best hope for achieving a > 10× power reduction for electronic devices; however, despite a decade of considerable worldwide research, experimental TFET results have significantly...

  3. E304 L6.2.2: Nanoelectrics - Tunneling

    04 May 2016 |

  4. Illinois ECE 598EP Lecture 12 - Hot Chips: Boundary Resistance and Thermometry

    17 Jul 2009 | | Contributor(s):: Eric Pop, Omar N Sobh

    Boundary Resistance and ThermometryTopics: Summary of Boundary Resistance Acoustic vs. Diffuse Mismatch Model Band to Band Tunneling Conduction Thermionic and Field Emission(3D) Photon Radiation Limit Photon Conductance of Nanoconstrictions Nanoscale Thermometry Scanning Thermal Microscopy

  5. Lecture 3A: Spin Transport

    20 Aug 2008 | | Contributor(s):: Supriyo Datta

    Objective: To extend the model from Lectures 1 and 2 to include electron spin. Every electron is an elementary “magnet” with two states having opposite magnetic moments. Usually this has no major effect on device operation except to increase the conductance by a factor of two.But it is now...

  6. Lecture 3B: Spin Transport

    20 Aug 2008 | | Contributor(s):: Supriyo Datta

    Objective: To extend the model from Lectures 1 and 2 to include electron spin. Every electron is an elementary “magnet” with two states having opposite magnetic moments. Usually this has no major effect on device operation except to increase the conductance by a factor of two.But it is now...

  7. Lecture 6: Graphene PN Junctions

    22 Sep 2009 | | Contributor(s):: Mark Lundstrom

    Outline:IntroductionElectron optics in grapheneTransmission across NP junctionsConductance of PN and NN junctionsDiscussionSummary

  8. ME 597 Lecture 1: Review of Quantum Tunneling/Introduction to STM

    01 Sep 2010 | | Contributor(s):: Ron Reifenberger

    Topics:Quantum TunnelingThe STM – basic ideaRecommended Reading: See References below.

  9. ME 597 Lecture 3: Quantum Tunneling/The STM

    08 Oct 2009 | | Contributor(s):: Ron Reifenberger

    Topics:Quantum TunnelingThe STM – basic ideaRecommended Reading: See References below.

  10. Modeling of Inter-ribbon Tunneling in Graphene

    11 Nov 2016 | | Contributor(s):: Maarten Van de Put, William Gerard Hubert Vandenberghe, Massimo V Fischetti

    IWCE presentation. In this paper we investigate the finite-size effect in nano-scaled graphene flakes. Improving on the bulk description, and because the structures are – atomistically speaking – large in size, we use the empirical pseudopotential method[2].

  11. Nanoelectronic Modeling Lecture 12: Open 1D Systems - Transmission through Double Barrier Structures - Resonant Tunneling

    27 Jan 2010 | | Contributor(s):: Gerhard Klimeck, Dragica Vasileska

    This presentation shows that double barrier structures can show unity transmission for energies BELOW the barrier height, resulting in resonant tunneling. The resonance can be associated with a quasi bound state, and the bound state can be related to a simple particle in a box calculation.

  12. Nanoelectronic Modeling Lecture 26: NEMO1D -

    09 Mar 2010 | | Contributor(s):: Gerhard Klimeck

    NEMO1D demonstrated the first industrial strength implementation of NEGF into a simulator that quantitatively simulated resonant tunneling diodes. The development of efficient algorithms that simulate scattering from polar optical phonons, acoustic phonons, alloy disorder, and interface...

  13. Nanoelectronic Modeling nanoHUB Demo 1: nanoHUB Tool Usage with RTD Simulation with NEGF

    09 Mar 2010 | | Contributor(s):: Gerhard Klimeck

    Demonstration of running tools on the nanoHUB. Demonstrated is the RTD Simulation with NEGF Tool using a simple level-drop potential model and a more realistic device using a Thomas-Fermi potential model.

  14. Nanoelectronic Modeling nanoHUB Demo 2: RTD simulation with NEGF

    09 Mar 2010 | | Contributor(s):: Gerhard Klimeck

    Demonstration of resonant tunneling diode (RTD) simulation using the RTD Simulation with NEGF Tool with a Hartree potential model showing potential profile, charge densities, current-voltage characteristics, and resonance energies. Also demonstrated is a RTD simulation using a Thomas-Fermi...

  15. NEMO5 Tutorial 6B: Device Simulation - Quantum Transport in GaSb/InAs Tunneling FET

    16 Jul 2012 | | Contributor(s):: Yu He

  16. NEMO5, a Parallel, Multiscale, Multiphysics Nanoelectronics Modeling Tool


    19 Sep 2016 | | Contributor(s):: Gerhard Klimeck

    The Nanoelectronic Modeling tool suite NEMO5 is aimed to comprehend the critical multi-scale, multi-physics phenomena and deliver results to engineers, scientists, and students through efficient computational approaches. NEMO5’s general software framework easily includes any kind of...

  17. NEMO5, a Parallel, Multiscale, Multiphysics Nanoelectronics Modeling Tool
: From Basic Physics to Real Devices and to Global Impact on nanoHUB.org

    10 Nov 2016 | | Contributor(s):: Gerhard Klimeck

    The Nanoelectronic Modeling tool suite NEMO5 is aimed to comprehend the critical multi-scale, multi-physics phenomena and deliver results to engineers, scientists, and students through efficient computational approaches. NEMO5’s general software framework easily includes any kind of...

  18. Outdoing Maxwell’s Demon: Taming Molecular Wildness

    11 May 2011 | | Contributor(s):: Dudley R. Herschbach

    This talk describes these developments, illustrating means to analyze and control molecular trajectories and spatial orientation and to select rotational and vibrational states, with applications to elucidating chemical reaction dynamics.

  19. Simulation of the Spin Field Effect Transistors: Effects of Tunneling and Spin Relaxation on its Performance

    05 Apr 2010 | | Contributor(s):: Yunfei Gao

    A numerical simulation of spin-dependent quantum transport for a spin field effect transistor(spinFET) is implemented in a widely used simulator nanoMOS. This method includes the effect of bothspin relaxation in the channel and the tunneling barrier between the source/drain and the channel....

  20. The Bardeen Transfer Hamiltonian Approach to Tunneling and its Application to STM/Carbon Nanotubes

    05 May 2004 | | Contributor(s):: Peter M. Albrecht, Kyle Adam Ritter, Laura B. Ruppalt

    This presentation covers the Bardeen Transfer Hamiltonian approach to tunneling and its application to STM/carbon nanotubes.