Tags: tunneling

Resources (41-53 of 53)

  1. Tunneling Through Triangular Barrier: an Exercise for PCPBT

    23 Jul 2008 | | Contributor(s):: Dragica Vasileska, Gerhard Klimeck

    This exercise teaches the users that a very good result can be obtained when the triangular barrier is approximated with 11 segment piece-wise constant potential barrier steps.www.eas.asu.edu/~vasileskNSF

  2. Slides: WKB Approximation Applications

    09 Jul 2008 | | Contributor(s):: Dragica Vasileska, Gerhard Klimeck


  3. Quantum Mechanics: Tunneling

    08 Jul 2008 | | Contributor(s):: Dragica Vasileska, Gerhard Klimeck

    In quantum mechanics, quantum tunnelling is a micro nanoscopic phenomenon in which a particle violates the principles of classical mechanics by penetrating a potential barrier or impedance higher than the kinetic energy of the particle. A barrier, in terms of quantum tunnelling, may be a form of...

  4. Reading Material: Tunneling

    08 Jul 2008 | | Contributor(s):: Dragica Vasileska


  5. Computational Nanoscience, Lecture 26: Life Beyond DFT -- Computational Methods for Electron Correlations, Excitations, and Tunneling Transport

    16 May 2008 | | Contributor(s):: Jeffrey B. Neaton

    In this lecture, we provide a brief introduction to "beyond DFT" methods for studying excited state properties, optical properties, and transport properties. We discuss how the GW approximation to the self-energy corrects the quasiparticle excitations energies predicted by Kohn-Sham DFT. For...

  6. Quantum and Semi-classical Electrostatics Simulation of SOI Trigates

    19 Feb 2008 | | Contributor(s):: Hyung-Seok Hahm, Andres Godoy

    Generate quantum/semi-classical electrostatic simulation results for a simple Trigate structure

  7. What Promises do Nanotubes and Nanowires Hold for Future Nanoelectronics Applications?

    18 Feb 2008 | | Contributor(s):: Joerg Appenzeller

    Various low-dimensional materials are currently explored for future electronics applications. The common ground for all these structures is that the surface related impact can no longer be ignored – the common approach applied to predict properties of bulk-type three-dimensional (3D) materials....

  8. Finite Height Quantum Well: an Exercise for Band Structure

    31 Jan 2008 | | Contributor(s):: David K. Ferry

    Use the Resonant Tunneling Diodes simulation tool on nanoHUB to explore the effects of finite height quantum wells.Looking at a 2 barrier device, 300 K, no bias, other standard variables, and 3 nm thick barriers and a 7 nm quantum well, determine the energies of the two lowest quasi-bound states.

  9. Application of the Keldysh Formalism to Quantum Device Modeling and Analysis

    14 Jan 2008 | | Contributor(s):: Roger Lake

    The effect of inelastic scattering on quantum electron transport through layered semi-conductor structures is studied numerically using the approach based on the non-equilibrium Green's function formalism of Keldysh, Kadanoff, and Baym. The Markov assumption is not made, and the energy...

  10. Electron-Phonon and Electron-Electron Interactions in Quantum Transport

    14 Jan 2008 | | Contributor(s):: Gerhard Klimeck

    The objective of this work is to shed light on electron transport through sub-micron semi-conductor structures, where electronic state quantization, electron-electron interactions and electron-phonon interactions are important. We concentrate here on the most developed vertical quantum device,...

  11. Quantum Ballistic Transport in Semiconductor Heterostructures

    27 Aug 2007 | | Contributor(s):: Michael McLennan

    The development of epitaxial growth techniques has sparked a growing interest in an entirely quantum mechanical description of carrier transport. Fabrication methods, such as molecular beam epitaxy (MBE), allow for growth of ultra-thin layers of differing material compositions. Structures can be...

  12. Periodic Potential

    21 Feb 2007 | | Contributor(s):: Heng Li, Alexander Gavrilenko

    Calculation of the allowed and forbidden states in a periodic potential

  13. The Bardeen Transfer Hamiltonian Approach to Tunneling and its Application to STM/Carbon Nanotubes

    05 May 2004 | | Contributor(s):: Peter M. Albrecht, Kyle Adam Ritter, Laura B. Ruppalt

    This presentation covers the Bardeen Transfer Hamiltonian approach to tunneling and its application to STM/carbon nanotubes.