Tags: tunneling

Resources (41-60 of 65)

  1. Illinois ECE 598EP Lecture 12 - Hot Chips: Boundary Resistance and Thermometry

    17 Jul 2009 | Contributor(s):: Eric Pop, Omar N Sobh

    Boundary Resistance and ThermometryTopics: Summary of Boundary Resistance Acoustic vs. Diffuse Mismatch Model Band to Band Tunneling Conduction Thermionic and Field Emission(3D) Photon Radiation Limit Photon Conductance of Nanoconstrictions Nanoscale Thermometry Scanning Thermal Microscopy

  2. Piece-Wise Constant Potential Barriers Tool Demonstration: Bandstructure Formation with Finite Superlattices

    11 Jun 2009 | | Contributor(s):: Gerhard Klimeck, Benjamin P Haley

    This video shows the simulation and analysis of a systems with a series of potential barriers. Several powerful analytic features of Piece-wise Constant Potential Barrier Tool (PCPBT) are demonstrated.

  3. K-12: Introduction to Quantum Wells

    24 Nov 2008 | | Contributor(s):: David Beck, Mark M Budnik

    A lesson plan for a 20-30 minute exercise for 4th and 5th grade Gifted and Talented students to explore the concept of quantum wells. The objectives of the lesson are:* The students will be able to understand the basic functions and concepts of quantum wells and tunneling.* Students will be able...

  4. Real space first-principles semiempirical pseudopotentials for Fe/MgO/Fe

    03 Dec 2008 | | Contributor(s):: Kirk Bevan

    A set of semiempirical pseudopotentials for the atomistic modeling of Fe/MgO/Fe tunnel junctions. See the attached document for a full description of their derivation and the modeling approach.Document Abstract:We present a real space density functional theory (DFT) localized basis set...

  5. First Principles Non-Equilibrium Green's Function Modeling of Vacum and Oxide Barrier Tunneling

    01 Dec 2008 | | Contributor(s):: Kirk H. Bevan

    Vacuum and oxide barrier electron tunneling phenomena have been studied at length for several decades. Yet with electron device barrier widths now commonly measured in atomic units, complex quantum mechanical phenomena such as wavefunction coupling, surface states, and interface bonds have begun...

  6. Assembly for Nanotechnology Survey Courses

    05 Nov 2008 | | Contributor(s):: Gerhard Klimeck, Dragica Vasileska

    Educational Tools for Classroom and Homework use to introduce nanotechnology concepts

  7. AQME - Advancing Quantum Mechanics for Engineers

    12 Aug 2008 | | Contributor(s):: Gerhard Klimeck, Xufeng Wang, Dragica Vasileska

    One-stop-shop for teaching quantum mechanics for engineers

  8. Lecture 3A: Spin Transport

    20 Aug 2008 | | Contributor(s):: Supriyo Datta

    Objective: To extend the model from Lectures 1 and 2 to include electron spin. Every electron is an elementary “magnet” with two states having opposite magnetic moments. Usually this has no major effect on device operation except to increase the conductance by a factor of two.But it is now...

  9. Lecture 3B: Spin Transport

    20 Aug 2008 | | Contributor(s):: Supriyo Datta

    Objective: To extend the model from Lectures 1 and 2 to include electron spin. Every electron is an elementary “magnet” with two states having opposite magnetic moments. Usually this has no major effect on device operation except to increase the conductance by a factor of two.But it is now...

  10. ABACUS - Assembly of Basic Applications for Coordinated Understanding of Semiconductors

    16 Jul 2008 | | Contributor(s):: Xufeng Wang, Daniel Mejia, Dragica Vasileska, Gerhard Klimeck

    One-stop-shop for teaching semiconductor devices

  11. Piece-Wise Constant Potential Barriers Tool

    30 Jun 2008 | | Contributor(s):: Xufeng Wang, Samarth Agarwal, Gerhard Klimeck, Dragica Vasileska, Mathieu Luisier, Jean Michel D Sellier

    Transmission and the reflection coefficient of a five, seven, nine, eleven and 2n-segment piece-wise constant potential energy profile

  12. Spin Coupled Quantum Dots

    09 Jul 2008 | | Contributor(s):: John Shumway, Matthew Gilbert

    Path integral calculation of exchange coupling of spins in neighboring quantum dots.

  13. Tunneling Through Triangular Barrier: an Exercise for PCPBT

    23 Jul 2008 | | Contributor(s):: Dragica Vasileska, Gerhard Klimeck

    This exercise teaches the users that a very good result can be obtained when the triangular barrier is approximated with 11 segment piece-wise constant potential barrier steps. www.eas.asu.edu/~vasilesk NSF

  14. Slides: WKB Approximation Applications

    09 Jul 2008 | | Contributor(s):: Dragica Vasileska, Gerhard Klimeck

    www.eas.asu.edu/~vasileskNSF

  15. Quantum Mechanics: Tunneling

    08 Jul 2008 | | Contributor(s):: Dragica Vasileska, Gerhard Klimeck

    In quantum mechanics, quantum tunnelling is a micro nanoscopic phenomenon in which a particle violates the principles of classical mechanics by penetrating a potential barrier or impedance higher than the kinetic energy of the particle. A barrier, in terms of quantum tunnelling, may be a form of...

  16. Reading Material: Tunneling

    08 Jul 2008 | | Contributor(s):: Dragica Vasileska

    www.eas.asu.edu/~vasileskNSF

  17. Computational Nanoscience, Lecture 26: Life Beyond DFT -- Computational Methods for Electron Correlations, Excitations, and Tunneling Transport

    16 May 2008 | | Contributor(s):: Jeffrey B. Neaton

    In this lecture, we provide a brief introduction to "beyond DFT" methods for studying excited state properties, optical properties, and transport properties. We discuss how the GW approximation to the self-energy corrects the quasiparticle excitations energies predicted by Kohn-Sham DFT. For...

  18. Quantum and Semi-classical Electrostatics Simulation of SOI Trigates

    19 Feb 2008 | | Contributor(s):: Hyung-Seok Hahm, Andres Godoy

    Generate quantum/semi-classical electrostatic simulation results for a simple Trigate structure

  19. What Promises do Nanotubes and Nanowires Hold for Future Nanoelectronics Applications?

    18 Feb 2008 | | Contributor(s):: Joerg Appenzeller

    Various low-dimensional materials are currently explored for future electronics applications. The common ground for all these structures is that the surface related impact can no longer be ignored – the common approach applied to predict properties of bulk-type three-dimensional (3D) materials....

  20. Finite Height Quantum Well: an Exercise for Band Structure

    31 Jan 2008 | | Contributor(s):: David K. Ferry

    Use the Resonant Tunneling Diodes simulation tool on nanoHUB to explore the effects of finite height quantum wells. Looking at a 2 barrier device, 300 K, no bias, other standard variables, and 3 nm thick barriers and a 7 nm quantum well, determine the energies of the two lowest quasi-bound states.