
Resonant Tunneling Diode operation
22 Apr 2010   Contributor(s):: Saumitra Raj Mehrotra, Gerhard Klimeck
A resonant tunneling diode (RTD) is a type of diode with a resonant tunneling structure that allows electrons to tunnel through various resonant states at certain energy levels. RTDs can be fabricated using many different types of materials (such as IIIV, type IV, IIVI semiconductors) and...

Simulation of the Spin Field Effect Transistors: Effects of Tunneling and Spin Relaxation on its Performance
05 Apr 2010   Contributor(s):: Yunfei Gao
A numerical simulation of spindependent quantum transport for a spin field effect transistor(spinFET) is implemented in a widely used simulator nanoMOS. This method includes the effect of bothspin relaxation in the channel and the tunneling barrier between the source/drain and the channel....

Nanoelectronic Modeling nanoHUB Demo 2: RTD simulation with NEGF
09 Mar 2010   Contributor(s):: Gerhard Klimeck
Demonstration of resonant tunneling diode (RTD) simulation using the RTD Simulation with NEGF Tool with a Hartree potential model showing potential profile, charge densities, currentvoltage characteristics, and resonance energies. Also demonstrated is a RTD simulation using a ThomasFermi...

Nanoelectronic Modeling nanoHUB Demo 1: nanoHUB Tool Usage with RTD Simulation with NEGF
09 Mar 2010   Contributor(s):: Gerhard Klimeck
Demonstration of running tools on the nanoHUB. Demonstrated is the RTD Simulation with NEGF Tool using a simple leveldrop potential model and a more realistic device using a ThomasFermi potential model.

Nanoelectronic Modeling Lecture 26: NEMO1D 
09 Mar 2010   Contributor(s):: Gerhard Klimeck
NEMO1D demonstrated the first industrial strength implementation of NEGF into a simulator that quantitatively simulated resonant tunneling diodes. The development of efficient algorithms that simulate scattering from polar optical phonons, acoustic phonons, alloy disorder, and interface roughness...

Nanoelectronic Modeling Lecture 12: Open 1D Systems  Transmission through Double Barrier Structures  Resonant Tunneling
27 Jan 2010   Contributor(s):: Gerhard Klimeck, Dragica Vasileska
This presentation shows that double barrier structures can show unity transmission for energies BELOW the barrier height, resulting in resonant tunneling. The resonance can be associated with a quasi bound state, and the bound state can be related to a simple particle in a box calculation.

ME 597 Lecture 3: Quantum Tunneling/The STM
08 Oct 2009   Contributor(s):: Ron Reifenberger
Topics:Quantum TunnelingThe STM – basic ideaRecommended Reading: See References below.

Lecture 6: Graphene PN Junctions
22 Sep 2009   Contributor(s):: Mark Lundstrom
Outline:IntroductionElectron optics in grapheneTransmission across NP junctionsConductance of PN and NN junctionsDiscussionSummary

Illinois ECE 598EP Lecture 12  Hot Chips: Boundary Resistance and Thermometry
17 Jul 2009   Contributor(s):: Eric Pop, Omar N Sobh
Boundary Resistance and ThermometryTopics: Summary of Boundary Resistance Acoustic vs. Diffuse Mismatch Model Band to Band Tunneling Conduction Thermionic and Field Emission(3D) Photon Radiation Limit Photon Conductance of Nanoconstrictions Nanoscale Thermometry Scanning Thermal Microscopy

PieceWise Constant Potential Barriers Tool Demonstration: Bandstructure Formation with Finite Superlattices
11 Jun 2009   Contributor(s):: Gerhard Klimeck, Benjamin P Haley
This video shows the simulation and analysis of a systems with a series of potential barriers. Several powerful analytic features of Piecewise Constant Potential Barrier Tool (PCPBT) are demonstrated.

K12: Introduction to Quantum Wells
24 Nov 2008   Contributor(s):: David Beck, Mark M Budnik
A lesson plan for a 2030 minute exercise for 4th and 5th grade Gifted and Talented students to explore the concept of quantum wells. The objectives of the lesson are:* The students will be able to understand the basic functions and concepts of quantum wells and tunneling.* Students will be able...

Real space firstprinciples semiempirical pseudopotentials for Fe/MgO/Fe
03 Dec 2008   Contributor(s):: Kirk Bevan
A set of semiempirical pseudopotentials for the atomistic modeling of Fe/MgO/Fe tunnel junctions. See the attached document for a full description of their derivation and the modeling approach.Document Abstract:We present a real space density functional theory (DFT) localized basis set...

First Principles NonEquilibrium Green's Function Modeling of Vacum and Oxide Barrier Tunneling
01 Dec 2008   Contributor(s):: Kirk H. Bevan
Vacuum and oxide barrier electron tunneling phenomena have been studied at length for several decades. Yet with electron device barrier widths now commonly measured in atomic units, complex quantum mechanical phenomena such as wavefunction coupling, surface states, and interface bonds have begun...

Assembly for Nanotechnology Survey Courses
05 Nov 2008   Contributor(s):: Gerhard Klimeck, Dragica Vasileska
Educational Tools for Classroom and Homework use to introduce nanotechnology concepts

AQME  Advancing Quantum Mechanics for Engineers
12 Aug 2008   Contributor(s):: Gerhard Klimeck, Xufeng Wang, Dragica Vasileska
Onestopshop for teaching quantum mechanics for engineers

Lecture 3A: Spin Transport
20 Aug 2008   Contributor(s):: Supriyo Datta
Objective: To extend the model from Lectures 1 and 2 to include electron spin. Every electron is an elementary “magnet” with two states having opposite magnetic moments. Usually this has no major effect on device operation except to increase the conductance by a factor of two.But it is now...

Lecture 3B: Spin Transport
20 Aug 2008   Contributor(s):: Supriyo Datta
Objective: To extend the model from Lectures 1 and 2 to include electron spin. Every electron is an elementary “magnet” with two states having opposite magnetic moments. Usually this has no major effect on device operation except to increase the conductance by a factor of two.But it is now...

ABACUS  Assembly of Basic Applications for Coordinated Understanding of Semiconductors
16 Jul 2008   Contributor(s):: Xufeng Wang, Dragica Vasileska, Gerhard Klimeck
Onestopshop for teaching semiconductor device education

PieceWise Constant Potential Barriers Tool
30 Jun 2008   Contributor(s):: Xufeng Wang, Samarth Agarwal, Gerhard Klimeck, Dragica Vasileska, Mathieu Luisier, Jean Michel D Sellier
Transmission and the reflection coefficient of a five, seven, nine, eleven and 2nsegment piecewise constant potential energy profile

Spin Coupled Quantum Dots
09 Jul 2008   Contributor(s):: John Shumway, Matthew Gilbert
Path integral calculation of exchange coupling of spins in neighboring quantum dots.