Tags: tutorial

Resources (81-100 of 180)

  1. Nanotechnology: Considerations for Facility Design

    21 May 2007 | | Contributor(s):: John Weaver

    The growing area of study broadly termed nanotechnology provides a new set of challenges to the facility designer. While evolutionary changes in the quality of clean spaces occur, it is the collaborative nature of this field that requires revolutionary changes in facility design. The main...

  2. SUGAR: the SPICE for MEMS

    21 May 2007 | | Contributor(s):: Jason Clark

    In this seminar, I present some design, modeling, and simulation features of a computer aided engineering tool for microelectromechanical systems (MEMS) called SUGAR. For experimental verification, I use a microdevice that is difficult to simulate with conventional MEMS software. I show that the...

  3. Introduction to X-ray Photoelectron Spectroscopy and to XPS Applications

    17 May 2007 | | Contributor(s):: Dmitry Zemlyanov

    X-ray Photoelectron Spectroscopy (XPS), which is known as Electron Spectroscopy for Chemical Analysis (ESCA), is a powerful research tool for the study of the surface of solids. The technique is widely used for studies of the properties of atoms, molecules, solids, and surfaces. The main success...

  4. Electron Emission from Nanoscale Carbon Materials

    15 May 2007 | | Contributor(s):: Timothy S Fisher

    Prior studies on electron emission show possibly beneficial effects ofnanoscale phenomena on energy-conversion characteristics. For example,recent work has shown that the electric field around a nanoscale fieldemission device can increase the average energy of emitted electrons. Weconsider here...

  5. Technology challenges of the 21st Century

    14 May 2007 | | Contributor(s):: Eugene Meieran

    The 20th century was a century of remarkable scientific and technical achievement, as recorded in the National Academy of Engineering book, "A Century of Innovation". Three forces ("a perfect storm") combined to make this possible; almost universal availability of electric power to enable many...

  6. Modeling and Analysis of VLSI Interconnects

    10 May 2007 | | Contributor(s):: Cheng-Kok Koh

    With continual technology scaling, the accurate and efficient modeling and simulation of interconnect effects have become problems of central importance. In order to accurately model the distributive effects of interconnects, it is necessary to divide a long wire into several segments, with each...

  7. Nanotechnologies, Science and Society: Promises and Challenges

    10 May 2007 | | Contributor(s):: James Leary

  8. Nucleic Acids

    07 May 2007 |

    Living organisms are self-assembling systems that achieve an enormous variety of functions through organization of components from sub-nanometer to meter scale. Understanding the functions of these systems must start with a study of the molecular components, their structures and interactions. By...

  9. Solid-State Lighting: An Opportunity for Nanotechnologists to Address the Energy Challenge

    25 Apr 2007 |

    More than one-fifth of the electrical power consumed in the U.S. is used for general illumination. Much of this energy is wasted to heat filaments in incandescent lamps, a century-old technology with an efficiency of about 5%. Fluorescent lighting is more efficient, but problems of color...

  10. Nanoscale Antenna Apertures

    24 Apr 2007 | | Contributor(s):: Xianfan Xu

    This presentation will discuss light concentration and enhancement in nanometer-scale ridge aperture antennas. Resent research, including numerical simulations and near field optical measurements has demonstrated that nanoscale ridge antenna apertures can concentrate light into nanometer domain....

  11. Is Seeing Believing? How to Think Visually and Analyze with Both Your Eyes and Brain

    26 Mar 2007 |

    This presentation will cover the basic techniques, and some of the available tools, for visualization, and will explain how to avoid miscommunicating information from visualizations.

  12. Toward Improving the Precision of Nanoscale Force-Displacement Measurements

    13 Mar 2007 | | Contributor(s):: Jason Clark

    Nanotechnology has great potential for being used to create better medicines, materials, and sensors. With increasing interest in nanotechnology to improve the quality of our lives, there has been an increasing use of nanoscience tools to measure force and displacement to understand nanoscale...

  13. What Can the TEM Tell You About Your Nanomaterial?

    26 Feb 2007 | | Contributor(s):: Eric Stach

    In this tutorial, I will present a brief overview of the ways that transmission electron microscopy can be used to characterize nanoscale materials. This tutorial will emphasize what TEM does well, as well where difficulties arise. In particular, I will discuss in an overview manner how...

  14. Atomistic Alloy Disorder in Nanostructures

    26 Feb 2007 | | Contributor(s):: Gerhard Klimeck

    Electronic structure and quantum transport simulations are typically performed in perfectly ordered semiconductor structures. Bands and modes are defined resulting in quantized conduction and discrete states. But what if the material is fundamentally disordered? What if the disorder is at the...

  15. Materials strength: does size matter? nanoMATERIALS simulation toolkit tutorial

    01 Feb 2007 | | Contributor(s):: Alejandro Strachan

    Molecular dynamics (MD) is a powerful technique to characterize the fundamental, atomic-level processes that govern materials behavior and is playing an important role in our understanding of the new phenomena that arises in nanoscale and nanostructured materials and result in their unique...

  16. NCN at Northwestern: Student Leadership Council Seminars

    05 Nov 2006 | | Contributor(s):: NCN at Northwestern University

    This series is organized by NCN students at Northwestern University.Speakers are invited by the Student Leadership Council to visitNorthwestern to interact with students and faculty, and to presenta research seminar on their research in Computational Nanotechnology.Significant interaction with...

  17. Electrical Resistance: an Atomistic View

    26 Oct 2006 | | Contributor(s):: Supriyo Datta

    This tutorial article presents a “bottom-up” view of electrical resistance starting from something really small, like a molecule, and then discussing the issues that arise as we move to bigger conductors. Remark ably enough, no serious quantum mechanics is needed to understand electrical...

  18. Nanoelectronics 101

    28 Aug 2006 | | Contributor(s):: Mark Lundstrom

    Semiconductor device technology has transformed our world with supercomputers, personal computers, cell phones, ipods, and much more that we now take for granted. Moore's Law, posited by Intel co-founder Gordon Moore in 1965, states that the number of transistors (the basic building blocks of...

  19. Modeling of Nanoscale Devices

    19 Oct 2006 | | Contributor(s):: M. P. Anantram, Mark Lundstrom, Dmitri Nikonov

    We aim to provide engineers with an introductionto the nonequilibriumGreen’s function (NEGF) approach, which is a powerful conceptual tool and a practical analysismethod to treat nanoscale electronic devices with quantum mechanicaland atomistic effects. We first review the basis for the...

  20. Scientific Ethics and the Signs of Voodoo Science

    18 Oct 2006 | | Contributor(s):: Andrew S. Hirsch

    Until recently, the issue of research ethics had not been a subject of explicit discussion within the Physics community. Over the past ten years, however, documented cases of scientific fraud have brought this issue to center stage. We will explore, through case studies, some examples ranging...