
[Illinois] ECE 564 Lecture 3
11 Apr 2016   Contributor(s):: Gabriel Popescu

[Illinois] ECE 564 Lecture 4
11 Apr 2016   Contributor(s):: Gabriel Popescu

[Illinois] ECE 564 Lecture 5
11 Apr 2016   Contributor(s):: Gabriel Popescu

[Illinois] ECE 564 Lecture 6
11 Apr 2016   Contributor(s):: Gabriel Popescu

[Illinois] ECE 564 Lecture 7
11 Apr 2016   Contributor(s):: Gabriel Popescu

[Illinois] ECE 564 Lecture 8
11 Apr 2016   Contributor(s):: Gabriel Popescu

[Illinois] ECE 564 Lecture 9
11 Apr 2016   Contributor(s):: Gabriel Popescu

[Illinois] ECE 564: Modern Light Microscopy
11 Apr 2016   Contributor(s):: Gabriel Popescu
Current research topics in modern light microscopy: optics principles (statistical optics, Gaussian optics, elastic light scattering, dynamic light scattering); traditional microscopy (bright field, dark field, DIC, phase contract, confocal, epifluorescence, confocal fluorescence); current...

[Illinois] ECE 564 Lecture 2
05 Apr 2016   Contributor(s):: Gabriel Popescu

[Illinois] Engineering the Mode Coupling in Microrings for Laser and Sensor Applications
12 Feb 2016   Contributor(s):: Lynford Goddard
The integrated microring Bragg reflector forms the basis of a new family of compact reflective photonic devices. The buildup of field strength in the high quality factor ring resonator configuration yields multiple reflection encounters with the same set of gratings. This enables high...

DataCentric Models for Multilevel Algorithms
07 Feb 2016   Contributor(s):: Samuel Guiterrez
Today, computational scientists must contend with a diverse set of supercomputer architectures that are capable of exposing unprecedented levels of parallelism and complexity. Effectively placing, moving, and operating on data residing in complex distributed memory hierarchies is quickly becoming...

New FOSLS Formulation of Nonlinear Stokes Flow for Glaciers
07 Feb 2016   Contributor(s):: Jeffrey Allen
This talk describes two Firstorder System Leastsquares (FOSLS) formulations of the nonlinear Stokes flow used to model glaciers and ice sheets. The first is a Stress formulation and the second a StressVorticity formulation. Both use fluidity, which is the reciprocal of viscosity and avoid the...

NonBlocking Conjugate Gradient Methods for Extreme Scale Computing
07 Feb 2016   Contributor(s):: Paul Eller
Many scientific and engineering applications use Krylov subspace methods to solve large systems of linear equations. For extreme scale parallel computing systems, the dot products in these methods (implemented using allreduce operations in MPI) can limit performance because they are a...

Preconditioning for DivergenceConforming Discretizations of the Stokes Equations
07 Feb 2016   Contributor(s):: Thomas Benson
Recent years have seen renewed interest in the numerical solution of the Stokes Equations. Of particular interest is the use of infsup stable pairs of finite elements for which weak enforcement of the incompressibility condition implies strong enforcement as well, such as with BDMelements....

Range Decomposition: A Low Communication Algorithm for Solving PDEs on Massively Parallel Machines
07 Feb 2016   Contributor(s):: Tom Manteuffel
The Range Decomposition (RD) algorithm uses nested iteration and adaptive mesh refinement locally before performing a global communication step. Only several such steps are observed to be necessary before reaching a solution within a small multiple of discretization error. The target application...

A Fast Multigrid Approach for Solving the Helmholtz Equation with a Point Source
04 Feb 2016   Contributor(s):: Eran Treister
Solving the discretized Helmholtz equations with high wave numbers in large dimensions is a challenging task. However, in many scenarios, the solution of these equations is required for a point source. In this case, the problem can be be reformulated and split into two parts: one in a solution of...

A Massively Parallel Semicoarsening Multigrid for 3D Reservoir Simulation on Multicore and MultiGPU Architectures
04 Feb 2016   Contributor(s):: Abdulrahman Manea
In this work, we have designed and implemented a massively parallel version of the Semicoarsening Black Box Multigrid Solver [1], which is capable of handling highly heterogeneous and anisotropic 3D reservoirs, on a parallel architecture with multiple GPU’s. For comparison purposes, the...

A Multigrid Method for the SelfAdjoint Angular Flux Form of the RadiationTransport Equation Based on Cellwise Block Jacobi Iteration
04 Feb 2016   Contributor(s):: Jeffrey Densmore
Cellwise block Jacobi iteration is a technique for radiationtransport calculations in which the angular flux for all directions is solved for simultaneously within a spatial cell with the angular flux in neighboring cells held fixed. Each step of the iteration then involves the inversion of a...

A Performance Comparison of Algebraic Multigrid Preconditioners on GPUs and MIC
04 Feb 2016   Contributor(s):: Karl Rupp
Algebraic multigrid (AMG) preconditioners for accelerators such as graphics processing units (GPUs) and Intel's manyintegrated core (MIC) architecture typically require a careful, problemdependent tradeoff between efficient hardware use, robustness, and convergence rate in order to...

A Scalable Algorithm for Inverse Medium Problems with Multiple Sources
04 Feb 2016   Contributor(s):: Keith Kelly
We consider the problem of acoustic scattering as described by the freespace, timeharmonic scalar wave equation given by (0.1) along with radiation boundary conditions. Here, is a point in , is the source term, and is the wavenumber. Our formulation is based on potential theory....