Tags: visualization

Description

Simulators can produce all sorts of numbers, but the numbers themselves aren't terribly meaningful until they are put into context by visualization techniques. For example, the coordinates of the various atoms in a molecule don't readily convey the shape of the molecule, but once those coordinates are loaded into VMD, the the resulting picture conveys not only the shape of the molecule, but other important properties as well.

Learn more about visualization techniques from the resources on this site, listed below.

Online Presentations (1-20 of 34)

  1. Bandstructure in Nanoelectronics

    01 Nov 2005 | | Contributor(s):: Gerhard Klimeck

    This presentation will highlight, for nanoelectronic device examples, how the effective mass approximation breaks down and why the quantum mechanical nature of the atomically resolved material needs to be included in the device modeling. Atomistic bandstructure effects in resonant tunneling...

  2. Computer Graphics Imagery for Motion Pictures and Commercial Advertising: The Achievement of Highly-Realistic Images

    30 Jul 2011 | | Contributor(s):: Kenneth Torrance

    The talk will review some of the underlying concepts from Radiation Heat Transfer that have now been implemented in synthetic images. In many cases, researchers in graphics have created algorithms that are many times faster and more detailed than the engineering algorithms from which they were...

  3. EDA Challenges in Nanoscale Design: A Synopsys Perspective

    11 Apr 2006 |

    Rich Goldman gives an overview of the current state ofthe semiconductor and EDA (Electronic Design Automation) industry with aspecial focus on the impact of nanometer scale design on design tools andthe economics of the industry.

  4. Electron and Ion Microscopies as Characterization Tools for Nanoscience and Nanotechnology

    27 Feb 2006 | | Contributor(s):: Eric Stach

    This tutorial presents a broad overview of the basic physical principles of techniques used in scanning electron microscopy (SEM), as well as their application to understanding processing/structure/property relationships in nanostructured materials. Special emphasis is placed on the capabilities...

  5. Electrons in Two Dimensions: Quantum Corrals and Semiconductor Microstructures

    04 Dec 2007 | | Contributor(s):: Eric J. Heller

    The images generated by a scanning tunneling microscope are iconic. Some of the most famous are Don Eigler’s quantum corrals, which reveal not only the guest atoms on a surface but especially the interference patterns of electrons shuttling back and forth along the surface. To understand the...

  6. Embedding science and technology education into students' lifestyles and technology choices

    06 Dec 2005 | | Contributor(s):: Krishna Madhavan

    Learning experiences of the future will be multi-sensory, engage technologies and significant computational power continuously and invisibly, and will be completely engaging. The emergence of highly cross-disciplinary fields like nanoscale science and technology, bioinformatics, and...

  7. Engineering Nanomedical Systems

    06 Mar 2006 | | Contributor(s):: James Leary

    This tutorial discusses general problems and approaches to the design of engineered nanomedical systems. One example given is the engineering design of programmable multilayered nanoparticles (PMNP) to control a multi-sequence process of targeting to rare cells in-vivo, re-targeting to...

  8. Exploring Electron Transfer with Density Functional Theory

    11 Jun 2006 |

    This talk will highlight several illustrative applications of constrained density functionaltheory (DFT) to electron transfer dynamics in electronic materials. The kinetics of thesereactions are commonly expressed in terms of well known Marcus parameters (drivingforce, reorganization energy and...

  9. First Principles-based Atomistic and Mesoscale Modeling of Materials

    01 Dec 2005 | | Contributor(s):: Alejandro Strachan

    This tutorial will describe some of the most powerful and widely used techniques for materials modeling including i) first principles quantum mechanics (QM), ii) large-scale molecular dynamics (MD) simulations and iii) mesoscale modeling, together with the strategies to bridge between them....

  10. First Principles-Based Modeling of materials: Towards Computational Materials Design

    20 Apr 2006 | | Contributor(s):: Alejandro Strachan

    Molecular dynamics (MD) simulations with accurate, first principles-based interatomic potentials is a powerful tool to uncover and characterize the molecular-level mechanisms that govern the chemical, mechanical and optical properties of materials. Such fundamental understanding is critical to...

  11. From Research to Learning in Chemistry through Visualization and Computation

    17 May 2007 | | Contributor(s):: Eric Jakobsson

    Modern chemistry research and high school chemistry education are separated by institutional and geographical boundaries. As such, much of secondary chemistry education is still based on the periodic table instead of the computational methods that drive current chemistry research. In this talk,...

  12. High-Resolution, High-Speed 3D Imaging and Applications

    19 Jul 2017 | | Contributor(s):: Song Zhang

  13. How Can Your Educational Modules Contain Interactive Online Simulation?

    28 Feb 2005 | | Contributor(s):: Gerhard Klimeck

    The Network for Computational Nanotechnology (NCN) is a multi-university, NSF-funded initiative with a mission to lead in research, education, and outreach to students and professionals, while at the same time deploying a unique web-based cyber-infrastructure to serve the nation''s National...

  14. HPC and Visualization for multimillion atom simulations

    21 Jun 2005 | | Contributor(s):: Gerhard Klimeck

    This presentation gives an overview of the HPC and visulaization efforts involving multi-million atom simulations for the June 2005 NSF site visit to the Network for Computational Nanotechnology.

  15. Introduction to Visualization

    17 Oct 2016 | | Contributor(s):: Vetria L. Byrd

  16. Is Seeing Believing? How to Think Visually and Analyze with Both Your Eyes and Brain

    26 Mar 2007 |

    This presentation will cover the basic techniques, and some of the available tools, for visualization, and will explain how to avoid miscommunicating information from visualizations.

  17. Launch of a Nanoscale Informal Science Education Network

    21 Feb 2006 | | Contributor(s):: larry bell

    The Museum of Science, Boston, in partnership with the Science Museum of Minnesota and the Exploratorium in San Francisco, has been selected by the National Science Foundation (NSF) to form and lead a national Nanoscale Informal Science Education Network (NISE Network) comprised of multiple...

  18. Mechanical Properties of Surfactant Aggregates at Water-Solid Interfaces

    05 Apr 2006 | | Contributor(s):: Patrick Chiu, Kunal Shah, Susan Sinnott

    This is a talk on the mechanical properties of surfactant aggregates at water-solid interfaces using Micelle-MD. This includes silica indentations of micelles with comparison to experimental data and graphite indentation of Micelle.

  19. Nanoparticle Synthesis and Assembly for Biological Sensing

    25 Oct 2005 | | Contributor(s):: Gil Lee

    Nanoparticles have unique physical and chemical properties that make them very useful for biological and chemical sensing. For example, colloidal gold has been used as an optical transducer for antibody based sensing for over twenty years and is the basis for a many of the point-of-use...

  20. NCN Cyberinfrastructure Overview

    21 Jun 2005 | | Contributor(s):: Gerhard Klimeck

    Presentation of the NCN cyberinfrastructure to the June 2005 NSF review team. The nanoHUB development over 12 months will be presented in a broad overview.