Tags: visualization

Description

Simulators can produce all sorts of numbers, but the numbers themselves aren't terribly meaningful until they are put into context by visualization techniques. For example, the coordinates of the various atoms in a molecule don't readily convey the shape of the molecule, but once those coordinates are loaded into VMD, the the resulting picture conveys not only the shape of the molecule, but other important properties as well.

Learn more about visualization techniques from the resources on this site, listed below.

Resources (21-40 of 50)

  1. Molecular Workbench: An Interface to the Molecular World

    25 Jun 2006 | | Contributor(s):: Charles Xie

    The Molecular Workbench software is a free, open-source modeling and authoring program specifically designed for use in science education. Powered by a set of real-time molecular simulation engines that compute and visualize the motion of particles interacting through force fields, in both 2D...

  2. NEMO 3D: Intel optimizations and Multiple Quantum Dot Simulations

    03 Aug 2006 | | Contributor(s):: Anish Dhanekula, Gerhard Klimeck

    NEMO-3D is a nanoelectronic modeling tool that analyzes the electronic structure of nanoscopic devices. Nanoelectronic devices such as Quantum Dots (QDs) can contain millions of atoms,. Therefore, simulating their electronic structure, can take up to several days. In order to simulate and...

  3. Exploring Electron Transfer with Density Functional Theory

    11 Jun 2006 | | Contributor(s)::

    This talk will highlight several illustrative applications of constrained density functionaltheory (DFT) to electron transfer dynamics in electronic materials. The kinetics of thesereactions are commonly expressed in terms of well known Marcus parameters (drivingforce, reorganization energy and...

  4. First Principles-Based Modeling of materials: Towards Computational Materials Design

    20 Apr 2006 | | Contributor(s):: Alejandro Strachan

    Molecular dynamics (MD) simulations with accurate, first principles-based interatomic potentials is a powerful tool to uncover and characterize the molecular-level mechanisms that govern the chemical, mechanical and optical properties of materials. Such fundamental understanding is critical to...

  5. EDA Challenges in Nanoscale Design: A Synopsys Perspective

    11 Apr 2006 | | Contributor(s)::

    Rich Goldman gives an overview of the current state ofthe semiconductor and EDA (Electronic Design Automation) industry with aspecial focus on the impact of nanometer scale design on design tools andthe economics of the industry.

  6. Tutorial on Using Micelle-MD

    05 Apr 2006 | | Contributor(s):: Patrick Chiu, Kunal Shah, Susan Sinnott

    This is a tutorial using Micelle-MD. This includes the main capabilities, computation procedure, with format of files generated, and the simulation setup, which includes the material models implemented.

  7. Mechanical Properties of Surfactant Aggregates at Water-Solid Interfaces

    05 Apr 2006 | | Contributor(s):: Patrick Chiu, Kunal Shah, Susan Sinnott

    This is a talk on the mechanical properties of surfactant aggregates at water-solid interfaces using Micelle-MD. This includes silica indentations of micelles with comparison to experimental data and graphite indentation of Micelle.

  8. Thermal Microsystems for On-Chip Thermal Engineering

    04 Apr 2006 | | Contributor(s):: Suresh V. Garimella

    Electro-thermal co-design at the micro- and nano-scales is critical for achieving desired performance and reliability in microelectronic circuits. Emerging thermal microsystems technologies for this application area are discussed, with specific examples including a novel micromechanical...

  9. Electron and Ion Microscopies as Characterization Tools for Nanoscience and Nanotechnology

    27 Feb 2006 | | Contributor(s):: Eric Stach

    This tutorial presents a broad overview of the basic physical principles of techniques used in scanning electron microscopy (SEM), as well as their application to understanding processing/structure/property relationships in nanostructured materials. Special emphasis is placed on the capabilities...

  10. Engineering Nanomedical Systems

    06 Mar 2006 | | Contributor(s):: James Leary

    This tutorial discusses general problems and approaches to the design of engineered nanomedical systems. One example given is the engineering design of programmable multilayered nanoparticles (PMNP) to control a multi-sequence process of targeting to rare cells in-vivo, re-targeting to...

  11. The nanoHUB Science Gateway

    07 Mar 2006 | | Contributor(s):: Sebastien Goasguen

    The TeraGrid Science Gateways program was initiated to expand the influence of TeraGrid resources through back-end integration into community developed portals and desktop applications. Nancy Wilkins-Diehr, SDSC, TeraGrid Area Director for Science Gateways will give a brief overview of the...

  12. Launch of a Nanoscale Informal Science Education Network

    21 Feb 2006 | | Contributor(s):: larry bell

    The Museum of Science, Boston, in partnership with the Science Museum of Minnesota and the Exploratorium in San Francisco, has been selected by the National Science Foundation (NSF) to form and lead a national Nanoscale Informal Science Education Network (NISE Network) comprised of multiple...

  13. How Can Your Educational Modules Contain Interactive Online Simulation?

    28 Feb 2005 | | Contributor(s):: Gerhard Klimeck

    The Network for Computational Nanotechnology (NCN) is a multi-university, NSF-funded initiative with a mission to lead in research, education, and outreach to students and professionals, while at the same time deploying a unique web-based cyber-infrastructure to serve the nation''s National...

  14. Embedding science and technology education into students' lifestyles and technology choices

    06 Dec 2005 | | Contributor(s):: Krishna Madhavan

    Learning experiences of the future will be multi-sensory, engage technologies and significant computational power continuously and invisibly, and will be completely engaging. The emergence of highly cross-disciplinary fields like nanoscale science and technology, bioinformatics, and...

  15. VolQD: Graphics Hardware Accelerated Interactive Visual Analytics of Multi-million Atom Nanoelectronics Simulations

    13 Dec 2005 | | Contributor(s):: wei qiao

    In this work we present a hardware-accelerated direct volume renderingsystem for visualizing multivariate wave functions in semiconductingquantum dot (QD) simulations. The simulation datacontains the probability density values of multiple electron orbitalsfor up to tens of millions of atoms,...

  16. First Principles-based Atomistic and Mesoscale Modeling of Materials

    01 Dec 2005 | | Contributor(s):: Alejandro Strachan

    This tutorial will describe some of the most powerful and widely used techniques for materials modeling including i) first principles quantum mechanics (QM), ii) large-scale molecular dynamics (MD) simulations and iii) mesoscale modeling, together with the strategies to bridge between them....

  17. Quantum Dot Lab

    12 Nov 2005 | | Contributor(s):: Prasad Sarangapani, James Fonseca, Daniel F Mejia, James Charles, Woody Gilbertson, Tarek Ahmed Ameen, Hesameddin Ilatikhameneh, Andrew Roché, Lars Bjaalie, Sebastian Steiger, David Ebert, Matteo Mannino, Hong-Hyun Park, Tillmann Christoph Kubis, Michael Povolotskyi, Michael McLennan, Gerhard Klimeck

    Compute the eigenstates of a particle in a box of various shapes including domes, pyramids and multilayer structures.

  18. Add Rappture to Your Software Development - Learning Module

    01 Nov 2005 | | Contributor(s):: Michael McLennan

    This series is a set of presentations formerly known as a "Learning Module." The presentations are meant to be viewed in sequence to get a full understanding of the topic. Please click on the following links in order to access each of the presentations in sequence. Overview Wrapping...

  19. Bandstructure in Nanoelectronics

    01 Nov 2005 | | Contributor(s):: Gerhard Klimeck

    This presentation will highlight, for nanoelectronic device examples, how the effective mass approximation breaks down and why the quantum mechanical nature of the atomically resolved material needs to be included in the device modeling. Atomistic bandstructure effects in resonant tunneling...

  20. Nanoparticle Synthesis and Assembly for Biological Sensing

    25 Oct 2005 | | Contributor(s):: Gil Lee

    Nanoparticles have unique physical and chemical properties that make them very useful for biological and chemical sensing. For example, colloidal gold has been used as an optical transducer for antibody based sensing for over twenty years and is the basis for a many of the point-of-use...