Role of Normal Processes in Thermal Conductivity of Silicon
 Version 2
 by (unknown)
 Version 3
 by (unknown)
Deletions or items before changed
Additions or items after changed
1  [[File(JamesAndPrabhakar_ProjectReport.pdf)]]  

2  
3  == Role of Normal Processes in Thermal Conductivity of Silicon ==  
4  
5  James Loy, Prabhakar Marepalli  
6  
7  ME 503 Final Project Report  
8  
9  
10  '''Abstract'''  
11  ''In the past decade, with the miniaturization of electronic circuits and growing interest in microscale heat transfer, Boltzmann transport equation (BTE) emerged as an important model for predicting the thermal behavior at small scales. Recent advancements in numerical methods and computational power enabled to solve this equation rigorously by relaxing several assumptions. But the scattering term of BTE is incredibly complex, still requiring some simplifications to make the solution possible while preserving relevant physics. One approximation is the single mode relaxation time (SMRT) approximation. This approximation assumes that each phonon scatters only to a lattice equilibrium energy. For many materials near equilibrium and at high enough temperatures, this works well. However, for low temperatures, and for low dimensional materials like graphene, this model fails to include phonon scattering due to normal processes, which play an indirect role in thermal resistance. In this project, we include normal phonon scattering in the BTE through the use of a shifted equilibrium distribution proposed by Callaway. We solve the nongray BTE using finite volume method (FVM) with coupled ordinates method (COMET) to compute the thermal conductivity and temperature distribution of silicon at different temperatures and length scales. We implement full phonon dispersion for all polarizations under isotropic assumption. The effect of including normal processes on the thermal conductivity predictions is rigorously analyzed. Our results show that ignoring the normal process overpredicts the thermal conductivity – which is a physically intuitive result. We also observe that the thermal conductivity increases and trends towards an asymptotic value as the length scale increases. By analyzing the temperature distribution, we also show that inclusion of normal processes diffuses the energy across the material – which is an expected result.''  
12  
13  
14  == 1. Introduction==  
15  
16  With increasing miniaturization of integrated electronic circuits (ICs) following the Moore’s law [1] several challenges pop up in trying to keep up with the trend. One of the major bottlenecks is the high density localized heat generation in ICs that impair the device performance. In order to better understand the thermal behavior at those scales it is essential to create robust models that can accurately predict the device failure. As the device size in ICs these days are less than 32nm where the ballistic behavior dominates, Fourier law cannot be used to make accurate predictions. One of the widely used alternatives to use the Boltzmann Transport Equation (BTE) which models the phonon distribution – the major heat carrier in semiconductors – for a given macroscopic device conditions. Phonon is a quantum of thermal vibration which is considered as particle in BTE.  
17  
18  Several researchers have developed simplified versions of BTE making intuitive assumptions to make it analytically or numerically solvable. Using these assumptions they were able to predict the thermal behavior of various materials. One of the most celebrated applications of BTE developed in early 1950s is to compute the thermal conductivity of a given material as a function of temperature, composition, and geometry, etc. [2], [3]. These analyses consider various phonon scattering mechanisms responsible for the thermal conductivity of a given material and models the effect of these scattering rates on the phonon distribution. Widely considered scattering mechanisms are isotopic scattering, boundary scattering, and threephonon scattering (Umklapp (U) and Normal (N) scattering). Isotopic scattering is caused due to the fact that any given material, by nature, has various isotopic compositions in it. Boundary scattering is dominant at low temperatures and length scales where the phonons hit the physical boundary of the material thereby causing resistance to heat flow. Threephonon scattering takes place when three phonons interact and results in frequency modification. This process is also called intrinsic or inelastic scattering which occurs due to the anharmonic nature of interatomic potential. These mechanisms explain why even perfectly pure crystals do not have infinite thermal conductivity (In most of the modeling procedures the interatomic potential is assumed harmonic which fail to show the threephonon scattering).  
19  
20  Over the last decade, with the improvement in computational power and numerical methods, many assumptions are relaxed and the BTE is solved more rigorously using entire phonon dispersion and relaxation time approximation [4]. Common methods to obtain relaxation rates include fitting the rate expressions to experimental values or perturbation theory [2], [5]. While the influence of all scattering terms on overall thermal conductivity at different temperatures and geometries has been well analyzed, the threephonon Nprocesses have been neglected in most of the computations. The reason for neglecting normal processes is the premise that they conserve phonon momentum and hence do not offer thermal resistance. While the above fact is partially true, Nprocesses populate phonons in that region that can participate in Uprocesses thereby indirectly contributing to the overall thermal conductivity. Neglecting Nprocesses still provided reasonable comparison with experiment for materials like Si and Ge because these are 3D materials and the number of phonons that participate in Uprocesses are comparably higher than Nprocess phonons. But in case of lower dimensional (2D) materials like graphene, the population of phonons in largewavevector region is very small and neglecting Nprocess provides false prediction of diverging thermal conductivity. This is because of the fact that the scarce phonon population makes them travel ballistically without many collisions. On the other hand, it was shown in [6] that on including Nprocesses the conductivity asymptotes to a constant value.  
21  
22  In this paper, we simulate the thermal conductivity of Silicon by including Nprocesses with full BTE model using relaxation time approximation and full phonon dispersion. Nprocess scattering formulation developed by Callaway [2] is used by strictly enforcing momentum conservation for Nprocess phonons and energy conservation for N, and U process phonons. We only consider isotopic and threephonon scattering mechanisms in this project. The simulation is performed on Silicon owing to easy availability of its dispersion curves and relaxation rates. Isotropic assumption is made in kspace which is reasonable for Si. In our simulation, we solve the energy form of nongray BTE [7] simultaneously with overall energy conservation (N+U processes) to extract energy distribution and temperatures respectively in a coupled fashion. This provides quick convergence compared to sequential solution of these equations (nongray BTE and energy conservation). Then we perform a detailed study of the effect of temperature, geometry, and mainly Nprocess scattering on the overall bulk thermal conductivity of Si.  
23  
24  We organize the rest of the paper as follows. In Section 2, we explain the physics of Normal scattering processes and discuss the situations when their effect would be significant. In Section 3, we provide a literature review of different models and assumptions used to simulate and analyze the effect of Nprocesses. In Section 4, we use Callaway’s thermal conductivity model to make a first order prediction of thermal conductivity of silicon. Here we briefly discuss the assumptions made in the model and their implications. In Section 5, we discuss the numerical method and solution procedure we used for simulating the thermal conductivity. Here we provide a detailed description of equations involved and the formulation used. In Section 6, we present and discuss the results of our simulations. We conclude in Section 7 by providing a direction for possible future work.  
25  
26  
27  ==2. Normal process scattering ==  
28  
29  '''Threephonon scattering'''  
30  
31  A three phonon scattering process results in frequency modification of the resultant phonons. They are also called as inelastic scattering events. These processes can be described by the energy and momentum relations shown in Figure 1 [8]. As shown in the figure, these processes can be classified into Normal and Umklapp processes. A Normal process conserves energy and momentum whereas Umklapp process only conserves energy. Another illustration in Figure 2 shows why Uprocesses do not conserve momentum. The Brillouin zone of the given material is shown in gray. Incoming phonons of wave vector k1 and k2 combine to form a single phonon of wave vector k3. The left part of the figure shows Nprocess in which the resultant phonon lies inside the Brillouin zone; whereas the resultant phonon for Uprocess (figure on the right side) has such a high wave vector that it is knocked out of the Brillouin zone. By mapping it back into Brillouin zone using reciprocal lattice vector G, we can see that the resultant phonon of wave vector k3 is in the direction opposite to that of k1 and k2. This explains why Uprocesses impede phonon momentum and thereby the heat flow. On the other hand, as Nprocesses do not impede phonon momentum they do not impede the heat flow directly. But they contribute indirectly by redistributing overall phonon population which can further participate in Uprocesses.  
32  
33  [[Image(three_phonon_events.bmp, 600px)]]  
34  
35  '''Figure 1''': Threephonon scattering events [8]  
36  
37  
38  [[Image(Phonon_nu_process.png, 600px)]]  
39  
40  '''Figure 2''': Illustration of momentum conservation by N and U processes [Wikipedia]  
41  
42  '''Importance of Nprocess'''  
43  
44  As discussed earlier, given the nature of Nprocesses it would be worthwhile to think of situations when Nprocess contribution is indeed significant. First, we consider how lowfrequency modes interact with high frequencymodes near the Brillouin zone boundary. Considering the selection rules (see Figure 1) of Uprocesses, only a mode of some minimum frequency ωi can participate in them [9]. This prohibits the interaction of lowfrequency modes with that of Brillouin zone boundary. But intuitively we know that these modes should somehow contribute to thermal resistance. This can be explained by the premise that Nprocesses that involve these lowfrequency modes generate the modes this minimum frequency ωi, which can then participate in Uprocesses, thereby providing thermal resistance. One of the other observations on importance of Nprocesses is discussed in [6] where it is shown that, with Nprocesses, graphene’s thermal conductivity diverges with increasing flake diameter thereby providing length dependence. But by including Nprocesses they showed that the conductivity asymptotes to a constant value.  
45  
46  
47  '''3. Literature review of Normal processes '''  
48  
49  In this section, we provide a brief literature review of the Nprocess analysis and their findings. We begin with Callaway’s phenomenological model for lattice thermal conductivity at low temperatures [2]. In this work, Callaway uses a relaxation time approximation for the scattering term of BTE, and assumes that all momentum destroying processes (isotopic, boundary, and Umklapp scattering) tend toward an equilibrium Planck distribution, whereas N processes lead to a displaced Planck distribution. Using this approximation, the scattering terms can be written as:  
50  
51  
52  $\{\{\backslash left(\; \backslash frac\{\backslash partial\; N\}\{\backslash partial\; t\}\; \backslash right)\}\_\{c\}\}=\backslash frac\{N(\backslash lambda\; )N\}\{\{\backslash tau\; \}\_\{N\}\}+\backslash frac\{\{N\}\_\{0\}N\}\{\{\backslash tau\; \}\_\{u\}\}$  
53    
54  (1)  
55  
56  where is the distribution function, is the relaxation time for all normal processes and is the relaxation time for all other momentum destroying processes, is the equilibrium Planck’s distribution and is displaced Planck’s distribution defined as  
57  
58  
59  $N(\backslash lambda\; )=\{\{\backslash left[\; \backslash exp\; \backslash left(\; \backslash frac\{\backslash hbar\; \backslash omega\; \backslash lambda\; .\backslash mathsf\{k\}\}\{\{k\}\_\{B\}T\}\; \backslash right)\; \backslash right]\}^\{1\}\}$  
60    
61  (2)  
62  
63  The term is along the direction of temperature gradient and defines the amount of energy redistributed by Nprocesses. He computed by enforcing momentum conservation for all Nprocess phonons using  
64  
65  
66  $\backslash int\{\{\backslash left(\; \backslash frac\{\backslash partial\; N\}\{\backslash partial\; t\}\; \backslash right)\_\{N\}\}\backslash text\{k\}\}\{\{d\}^\{3\}\}k=\backslash int\{\backslash frac\{N(\backslash lambda\; )N\}\{\{\backslash tau\; \}\_\{N\}\}\backslash text\{k\}\{\{d\}^\{3\}\}k=0\}$  
67    
68    (3) 
+  (3)

69  +  
70  +  Using the assumptions that only acoustic phonons contribute to thermal conductivity all acoustic modes can be averaged using a single group velocity, and the relaxation rates for all processes can be expressed as a function of frequency and temperature he computed a simplified expression for thermal conductivity as


71  +  
72  +  
73  +  
74  +  <math>k=\frac{{k}_{B}}{2{\pi }^{2}c}({I}_{1}+\beta {I}_{2})</math>


75  +  
76  +  
77  +  
78  +  
79  +  <math>{{I}_{1}}=\int_{0}^{{{k}_{B}}\Theta /\hbar }{{{\tau }_{c}}\frac{{{\hbar }^{2}}{{\omega }^{2}}}{{{k}_{B}}^{2}{{T}^{2}}}\frac{{{e}^{\hbar \omega /{{k}_{B}}T}}}{{{\left( {{e}^{\hbar \omega /{{k}_{B}}T}}1 \right)}^{2}}}{{\omega }^{2}}d\omega }</math>


80  +  
81  +  
82  +  
83  +  
84  +  <math>{{I}_{2}}=\int_{0}^{{{k}_{B}}\Theta /\hbar }{\frac{{{\tau }_{c}}}{{{\tau }_{N}}}\frac{{{\hbar }^{2}}{{\omega }^{2}}}{{{k}_{B}}^{2}{{T}^{2}}}\frac{{{e}^{\hbar \omega /{{k}_{B}}T}}}{{{\left( {{e}^{\hbar \omega /{{k}_{B}}T}}1 \right)}^{2}}}{{\omega }^{2}}d\omega }</math> 