Support Options

Submit a Support Ticket

Home WIKI PN Junction Lab Learning Materials

PN Junction Lab Learning Materials

by Saumitra Raj Mehrotra, Dragica Vasileska, Gerhard Klimeck, Alejandra J. Magana


By completing the PN-Junction Lab in ABACUS - Assembly of Basic Applications for Coordinated Understanding of Semiconductors, you will be able to:

a) conduct drift-diffusion modeling,

b) describe the physical and mathematical operation of PN-Junctions, and

c) build and validate a simple PN Junction simulation tool.

The specific objectives of the PN-Junction Lab are:


Recommended Reading

If you have not had experience with pn-junction physics and modeling, here is a list of resources that will help you have the required knowledge to get the most of these materials:

1. Rober F. Pierret, Semiconductor Device Fundamentals (Addison-Wesley Publishing Company, 2000). (theory of pn-diodes)

2. Michael Shur, Physics of Semiconductor Devices (Prentice Hall, 1990). (theory of pn-diodes)

3. Dragica Vasileska, Stephen M. Goodnick and G. Klimeck: Computational Electronics: Semiclassical and Quantum Device Modeling and Simulation, (CRC Press, 2010). (modeling of pn-diodes)


PN Junction Lab: First-Time User Guide

Theoretical descriptions

* Physical and Analytical Description of the Operation of a PN Diode (physical, analytical model)

* PN junction in forward bias (simulation)

* Numerical solution of the Drift-Diffusion Equations for a diode (computational model)

* Drift-Diffusion Modeling and Numerical Implementation Details (implementation details and source code dissemination)

Tool Verification

Verification of the pn-junction tool is done by comparison of the simulation results for the electric field in equilibrium with the depletion charge approximation results. This verification process can be done while running the tool only, as it superimposes the depletion charge approximation results.

Verification of the Validity of the PN Junction Tool

Worked Examples

The following Worked Examples for a PN Diode are described in detail:

Example 1: Equilibrium PN-Junction

Example 2: PN-Junction Under Bias

Example 3: Non-Symmetric Junction

Example 4: Series Resistance

Exercises and Homework Assignments

1. Basic operation of a PN diode - Theoretical exercise

2. Homework for PN Junctions: Depletion Approximation (ECE 305)

3. PN Junction Lab Exercise: Non-Idealities in a PN Diode

4. PN Diode Exercise: Series Resistance

5. Exercise: PIN Diode

6. PN Diode Exercise: Graded Junction

7. PN diode - Advanced theoretical exercises

8. Schottky diode - Theoretical exercises

Solutions to Exercises

Solutions to exercises are provided to Instructors ONLY!

Take a Test

This test will assess your conceptual understanding of the physical, mathematical and computational knowledge related to operation and modeling of PN Junctions operation.

ABACUS: Test for PN Junction Lab

Solve the Challenge

In this final challenge you will integrate all what you have learned about PN Junction.

Solve a Challenge for a PN Diode

Created on , Last modified on, a resource for nanoscience and nanotechnology, is supported by the National Science Foundation and other funding agencies. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.