Nanoelectronics in the NCN

Supriyo Datta Purdue University

NANOELECTRONICS: Broad Vision

to develop a general framework for relating atomic structure to device and circuit level performance.

- Conceptual Understanding
- Practical Approaches
- Educational Resources
- Simulation Tools
- Professional Leadership

NANOELECTRONICS: Concrete Projects

to develop a general framework for relating atomic structure to device and circuit level performance.

- Conceptual Understanding
- Practical Approaches
- Educational Resources
- Simulation Tools
- Professional Leadership

- Cho (contacts)
- Datta (basic theory)
- Lundstrom (devices)
- Leburton (phonons)
- Klimeck (software)
- Roy (circuits)
- Dai (experiments)

Carbon nanotube electronics

July 2004

- Ratner (chemistry)
- Datta (basic theory)
- Klimeck (software)
- Roy/Lundstrom (circuits)
- Hersam (experiments)

Molecular electronics on Si

Nanodevices:

A Unified View

Molecular Electronics

MOSFET's

CNT Electronics

: A toy example

$$\epsilon_2$$
 ϵ_1

$$\begin{bmatrix} \mathbf{E} - \boldsymbol{\varepsilon}_1 & -t \\ -t & E - \boldsymbol{\varepsilon}_2 \end{bmatrix}$$

$$\frac{t^2}{E - \varepsilon_2} = \Sigma \boxed{\varepsilon_1}$$

$$egin{bmatrix} \mathbf{H} & oldsymbol{ au} \ oldsymbol{ au}^+ & H' \end{bmatrix}$$

$$\Sigma = \tau \left[\mathbf{E} \mathbf{S} - \mathbf{H}' \right]^{-1} \tau^{+}$$

$$\Sigma$$
 [H]

$$[H + \Sigma]$$

Bridging Disciplines

$$\Sigma(\mathbf{c},\mathbf{c}) = \tau(\mathbf{c},\mathbf{p}) \ g(\mathbf{p},\mathbf{p}) \ \tau^{+}(\mathbf{p},\mathbf{c})$$

Avik Ghosh, Albert Liang, Diego Kienle, Eric Polizzi

Quantum Transport: A Unified Approach

Unified Model

MOSFET's

Molecular Electronics

CNT Electronics

Quantum Transport: A Unified Approach

Unified Model

Ferdows Zahid

Tehseen Kazmi

Michael McLennan

to develop a general framework for relating atomic structure to device and circuit level performance.

- Conceptual Understanding
- Practical Approaches
- Educational Resources
- Simulation Tools
- Professional Leadership

What is a contact?

Klimeck, Lake et.al. APL (1995)

Energy has to be removed efficiently

from the contacts: otherwise

--> "hot" contacts

Hot "contacts"

Hot "contacts"

Hot phonons?

Molecular desorption?

Modeling "hot contacts"

Unified Model

Supplement device equations with

separate equation

for "contact"

Modeling "hot contacts"

Unified Model

Supplement device equations with

separate equation

for "contact"

Contacts can involve different degrees of freedom:

- Mechanical
- Spin

Summary

Unified Model

Sensing

- Conceptual Understanding
- Theoretical Approaches
- Educational Resources
- Simulation Tools
- Professional Leadership

www.nanohub.org

"Hot contacts"

