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ABSTRACT

This memorandum documents the database subroutines in the PROPHET simulator. The database
provides access to material coefficients and tables, numerical parameters and control options in a
standardized way. The database is heirarchically organized and has an inheritance facility.
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1. Introduction

The simulator PROPHET is a computer program for the solution of the partial differential equations
(PDEs) which arise in modeling semiconductor devices and processes.Any such simulator contains
a number of physical models with coefficients which have been calibrated in the past or which
require tuning by the simulator user. The coefficients may take the form of numbers, temperature
dependent formulae, or tables of measured data. The first function of the PROPHET database is to
store such coefficients. In addition it has been found convenient to store all control information for
the simulator in the same database, including a description of the user’s input file, a description of
the set of equations to be solved, and parameters for the numerical methods. All miscellaneous
information pertaining to a simulation, as opposed to structured information such as the grid and
matrix, are stored in the database.

The data is organized heirarchically. At the top level, the heirarchy is structured as shown in Fig 1.

The top level objects are the user’s input file, options for this particular run, and the library. The

root { % top of tree
userinput { % user’s parsed input file

card1 { % first command
parm1 % parameters of first command
parm2

}
card2... % second command

}
options { % control options, e.g.

timestep % whether to print timesteps
}
library { % coefficient library

physics { % physical coefficients
silicon { % organized by material

ni % e.g. intrinsic number
boron { % solution quantity in material

Dix % their parameters, e.g.
} % diffusivity

}
math { % numerical parameters

grid.ratio % e.g. maximum size ratio of
} % adjacent grid cells

cards { % recognized commands
solve {

time % parameters of “solve” command
temperature

}
cards.defaults {

}
}

}

Figure 1: Top level of PROPHET database.
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library is divided into physical and numerical parameters, and the list of recognized commands and
their defaults is also stored here. Physical parameters are organized according to material, with
solution quantities appearing under the materials in which they are to be solved. The information
on what equations to solve for a particular quantity is stored as a property of that quantity; e.g. the
default solution method for boron is stored at library/physics/silicon/boron/
math.default. See reference[1] for details of PDE specification.

The advantages of this storage scheme is uniform and organized access to all simulation
parameters, rather than the ad-hoc common blocks and static variables of, for instance, SUPREM4.
It also means that new modules can access user-defined parameters without making any
arrangements for their storage or transmittal elsewhere in the code. Only the subroutine requesting
a parameter knows of its existence. Typically a single line of code is required to request a
parameter, and the request is answered by one line in the user’s input file defining the value of that
parameter, or one line in the stored library. The low overhead in defining new parameters is
intended to discourage module programmers from hard coding coefficients or decisions, leaving
as much as possible accessible outside the binary.

The following sections will describe the data structures of the database, the procedures used to
access them, the i/o facilities of the database, and some higher level access functions. While not
strictly a part of the database, the expression parser is also described.

2. Data structures

The basic object of the database is a property. A property is a typed union. The current types
are real, integer, string, property list, integer array and real array (pREAL, pINT, pSTRING,
pLIST, pIARRAY, pRARRAY) and their union names are val.rval, val.ival, val.sval,
val.lval, val.iaval, val.raval.

A property list (plist) is the organizing object of the database; it contains an array of names and
an array of properties. The heirarchy is constructed by putting a property list on a parent list. It is
permitted (at least currently) to have multiple properties of the same name on a list.

An integer array has a dimension, a short array of bounds, and an array of integer data. A real array
is the same except that the data is real. See Figure 2. The tyepdef real translates to float or
double depending on the hardware architecture.

The xfile field of a property is reserved for those properties whose contents may not have been
read into memory yet. This allows an integer array or real array to be inserted into the database
heirarchy while postponing the possibly time-consuming input of its contents. At the time it is
actually referenced, the fill_prop subroutine retrieves the data.

Each property list maintains a pointer to its parent, in order to support a “..” construction similar to
the Unix file system. The nalloc field tracks the size of the currently allocated arrays of names
and properties; the nused field tracks how many are actually being used.

The root of the heirarchy is a property pointer called rootprop. Its type is a property list on which
the “userinput”, “library” and “options” lists sit. It is initialized by the ndb_init call. The macro
rootlist simplifies references to the list field in the root property.

The internal data structures of the database should not be referenced outside the database code
itself. The access routines which add and delete properties and property lists are described next.
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3. Database access subroutines.

The database has the following access subroutines, listed in table 1.

The subroutine count_properties returns the number of properties on a list.

The subroutine get_local_property returns a property by name from a property list. The
property must exist in the list itself and not be inherited. A null pointer is returned if the name is
not found. If there are multiple properties of the same name, the first such property is returned.

The subroutine get_next_local_property allows a traversal of all the properties in a list. If
the start property is null, the first property is returned, else the next property after the given one
is returned. If the start property does not belong to the current property list, the results are
undefined.

The subroutine get_property_by_index returns a property by index in the list. The index
begins at one.

The subroutine get_property_name returns the name of a property by index in the list. The
index begins at one.

The subroutine get_property is the main access function. Given a list and a name, it looks up
the name and returns a pointer to the property if it exists. If it does not exist, the list is checked for
a property called SeeAlso. That property is a string pointing at another list through a combination
of “..” and “/” similar to a Unix symbolic link. If found, that other list is then searched for the
desired name. The procedure is recursive. Note that, unlike a symbolic link, a SeeAlso pointer

rarray

dim

bound

data

2 3

1.0 14. 42.

57. 57. 57.

Figure 2. Data structures.

property

enum type

val (ival,rval,sval,lval,iaval,raval)

char* xfile

plist

plist *parent

nalloc nused

names props

“name1”

“name2”

“name3”

property1

property2

property3
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always references a property list, not a property.

The subroutine find_property is similar to get_property, except that it takes as argument
not a simple name but a pathname including any combination of “..”, list names, and “/” to arrive
at a valid destination. It returns a pointer to a property. It is most frequently used starting at the root
of the heirarchy tree

find_property(“library/physics/silicon/boron/Dix”, rootlist)
to retrieve properties from the library, but can also be used to locate properties relative to a leaf
property. This is the how the SeeAlso mechanism operates.

The subroutine fill_prop causes an array property to be filled from file, if it has not yet been
read in. It has no effect on other properties. It returns the property being operated on, or null if there
was a problem reading the array’s contents.

The subroutine put_local_property adds a new property to a list and returns a pointer to it.
The property begins life with a type of pNONE, and a type should be immediately assigned on
return.

The subroutine put_local_list puts a sublist on a given list. It returns a list, that is, a pointer
to the list field of the newly created property.

The subroutine delete_local_property removes a property from a list. It returns 0 or -1 for
success or failure. If the property is a list, it can only be deleted if all its entries have been deleted.

Table 1 - database access subroutines

int count_properties( plist *list)

property* get_local_property( char *name, plist *list)

property* get_next_local_property( char* name, plist* list,
property* start)

property* get_property_by_index( plist* list, int index)

char* get_property_name( plist* list, int index)

property* get_property( char* name, plist *list)

property* find_property( char* pathname, plist *list)

property* fill_prop( property *p)

property* put_local_property( char* name, plist* list)

plist* put_local_list( char* name, plist* list)

int delete_local_property( char* name, plist* list)

int delete_plist( char* name, plist* list)

int deep_delete_plist( char* name, plist* list)

int clear_plist( plist* list)

int deep_clear_plist( plist* list)

plist* find_list( char* path, plist* list)

int ndb_init()

int ndb_check( plist* list, char *prefix)
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The subroutine clear_list removes all the properties of a list, and returns 0 or -1.

The subroutine delete_plist combines the previous two functions by first clearing a property
list of its properties, and then removing the list itself from its parent. It returns either 0 for success,
-1 for being unable to perform the actions, or -2 if the given name exists but does not refer to a list.

The subroutine deep_clear_plist removes all the properties of a list, and on finding any lists,
enters them and removes them also.

The subroutine deep_delete_plist not only clears a list and all its sublists, but removes the list
itself from its parent.

To clarify, the clear functions remove the properties from a list; the delete functions remove
the list itself.

The subroutine find_list takes a pathname and returns a list on which the requested property
can be created or modified. The property need not yet exist. Although not necessary for using the
routine, the mechanism by which it works is worth comment. The procedure is straightforward in
the case of a property which exists; the list to which it belongs is returned. In the case of a property
which exists only by virture of a SeeAlso pointer, a “shadow tree” is constructed (Fig. 3). The

shadow tree has one level for each level of the real tree holding the SeeAlso’d property, with a
link at each level to the orginal tree. The bottom list on the shadow tree is returned (that is,
library/physics/poly/boron). This allows the user to create, in this example, a library/
physics/poly/boron/Dix different from that of silicon, but with all other poly properties
continuing to be inherited from silicon. In the case of find_list(“library/physics/
silicon/boron/Dix”), the simple list library/physics/silicon/boron would be
returned.

The subroutine ndb_init() creates a root property and makes it of type pLIST, with 0 entries,
and points the global variable rootprop at the root property.

The subroutine ndb_check() performs various database self-consistency checks, including that

After execution

library/physics {
silicon {

boron {
Dix = 4.2

}
poly {

SeeAlso “../silicon”
boron {

SeeAlso “../silicon/boron”
}

}
}

Figure 3. Construction of shadow tree, before and after executing find_list(“library/

physics/poly/boron/Dix”)

Before execution

library/physics {
silicon {

boron {
Dix = 4.2

}
poly {

SeeAlso “../silicon”
}

}



7

every property has a name and type, that array properties have valid file pointers, and that SeeAlso
properties refer to valid destinations.

4. Database input/output functions

The following subroutines carry out database i/o functions.

The subroutine ndberr prints error messages to stderr and also in a log file if it has been
opened. All error messages are intended to go through ndberr.

The subroutine ndblog prints run information to stdout and also in the log file if it has been
opened. All output is intended to go through ndbout.

Both ndberr and ndbout resemble the printf function in C; the first argument is a format string
and the remaining arguments are inserted into the output in printable form according to the format
string. The interpretation of the string is the same as in printf.

The subroutine ndbsetlog assigns a log file to which both stdout and stderr are copied. Setting a
log file allows all the error and output of a run to be collected in sequence in one file without the
usual buffering sequence problems. Stdout is usually then redirected to /dev/null, and only
stderr apears on the screen.

The subroutine dump_list dumps the contents of a list to a stream. It is useful for saving a private
copy of the database after a number of user commands have modified it. The file can then be used
as input to a subsequent run. The darray flag indicates whether to dump arrays raw (1 for
inspection) or simply a pointer to the file from which the array came (0 for reuse in subsequent
runs).

The subroutine do_ndbparse takes a pointer to a list property and builds a tree by reading the
filename.The file format is defined by a very small YACC grammar; an example can be found in the
appendix. It is usually used to initialize the database from file; however it can be subsequently be
used to extend it by reading subtrees onto leaves of the original tree.

5. Expression parser

A second YACC grammar exists to parse arithmetic expressions. The objects on which the parser
operates can be either scalars or vectors; all operations are carried out componentwise. The
language allows variables to be defined for reference on subsequent calls. The parser is
conveniently used for database quantities which are a function of, for instance, temperature. A first
call establishes the variable kT in the parser’s symbol table; subsequent calls can evaluate a series
of expressions such as 42*exp(-3.0/kT).

The grammar consists of the usual numerical expressions, terminated with a semicolon, and
optionally preceded by “name =” in order to store the result in the parser’s symbol table under
“name”. Exponentiation is indicated by a caret (^) and the constants PI, E, GAMMA and DEG

int ndberr( char* string, arg1, arg2)

int ndblog( char* string, arg1, arg2)

int ndbsetlog( char* name)

int dump_list( plist* list, FILE* fd, int darray)

int do_ndbparse( property* prop, char* filename)



8

(180/ ) are provided. The following functions are provided: sin, cos, log, log10, exp,
erfc, erf, sqrt, abs, normal, min, max, silcni, silceg. Given a vector, normal
returns a copy with all components scaled by the largest magnitude. Min and max return vectors
with all components equal in size to the minimum or maximum of the given vector. Silcni and
silceg are specialized functions for the intrinsic number and energy gap in silicon as a function
of temperature (which have no closed form expression). The grammar also allows references to
database variables through the syntax ${pathname}; the pathname is interpreted relative to the
database root property. Any mixture of vectors and reals is allowed provided all vectors have the
same length; the result vector will be that length also.

The expression parser subroutines are

The main entry point is the subroutine vexpr. It evaluates a string using scalars and vectors already
installed in the symbol table. It returns a vector of length either one or the length of the vectors used
in the expression. This vector is malloc’ed and should be free’d when no longer in use.

The subroutine symReal installs a named scalar in the symbol table.

The subroutine symVec installs a named vector in the symbol table.

The subroutine symClean removes all symbol table objects higher than the given level from the
symbol table. Each object in the symbol table has a “level”; the lower level, the more permanent.
Level 0 are the constants and functions. Level 1 is the normal variables created by assignment
statements. Level 2 or higher are for variables which are intended to be of a temporary nature. Both
symReal and symVec install symbols at Level 2. Thus the calls symReal(“x”,1.0) and
vexpr(“x=1.0;”, &n, &realp) have similar results except that the former creates x with a
level of 2 and the latter creates it with a level of 1. A call to symClean(2) would clear the former
case but not the latter.

The subroutine symInit installs the standard constants and functions in the symbol table.

The subroutine symNode is a PROPHET-specific function which installs all the solution quantities
and node coordinates as vectors in the expression parser symbol table. This can be used in
calculating functions for plotting, for instance.

The subroutine evalcoeff evaluates a property, whether it is real, integer, string, or array, and
calculates a real number. The return value is zero for success, one if given a nonexistent property,
and minus one if the property existed as a string but could not be parsed. If the property is a table,
it is assumed to represent a table of some quantity as a function of temperature, and the symbol T
is retrieved from the symbol table to use as a lookup index in the property’s table contents.

int vexpr( char* string, int n, real** x)

int symReal( char* name, real val)

int symVec( char* name, int len, real* val)

int symClean( int level)

int symInit()

int symNode( partition* thePart)

int evalcoeff( property* prop, real *value)

π
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6. Higher level subroutines

A number of convenience functions are layered over the core of the database. Many exist for
compatability with the first generation database. Among them are the following.

The subroutine dbase_error is an obsolete interface to ndberr; the latter is preferred.

The subroutine findLib(s) is a shorthand for find_property( concat (“library/”, s),
rootlist).

The subroutine findDB is also a shorthand for find_property( name). In addition it causes a
warning to be printed if the property is not found and noWarning argument is 0. Like
find_property, it returns a null pointer if the property cannot be found.

The subroutine libeval allows library parameters to be evaluated in FORTRAN. It calls
find_property on the string name and then evalcoeff to evaluate the property, returning a
real number.

The subroutine dber0 is a FORTRAN subroutine to allow FORTRAN output to go through the normal
log mechanism (and helps avoid linking the FORTRAN I/O libraries!)

7. Summary

The PROPHET database provides organized access to the parameters and coefficients which govern
a simulation. Subroutines to maintain and modify a heirarchy of parameters are provided, as well
as an expression parser to evaluate strings stored in the database. Experience since 1990 has shown
the database to be a convenient and powerful component of a modern PDE solver.

int dbase_error( int type, char* message, char* extra)

property* findLib (char* name)

property* findDB( char* name, int noWarning)

FORTRAN sub-
routine

libeval( s, x)

FORTRAN sub-
routine

dber0( s1, s2)
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8. Appendix

The following is a simple database which can be read by do_ndbparse

library = (list) {
############################################################
#All the cards here
############################################################
cards = (list) {

dbase = (list) {
print = (int) 1;
printval = (int) 1;
printlist = (int) 1;
printall = (int) 1;
modify = (int) 1;
delete = (int) 1;
deletelist = (int) 1;
create = (int) 1;
createlist = (int) 1;
createdir = (int) 1;
deletedir = (int) 1;
sync = (int) 1;
name = (string) ““;
file = (string) ““;
ival = (int) 0;
rval = (real) 0;
sval = (string) ““;
fval = (string) ““;
from = (string) ““;
type = (string) ““;
list = (string) ““;
check = (int) 1;
domain = (string) ““;
temperature = (real)0;
pressure = (real)0;

};

caminoLoad = (list) {
name = (string) ““;

};

field = (list) {
set = (string) ““;
value = (string) ““;

};

graph = (list) {
 element= (string)““;
 axis = (int)1;
 boundary= (int)1;
 materials= (int)1;
 gridline= (int)1;
 gridpoint= (int)1;
 contour= (int)1;
 cminimum= (real)0;
 cmaximum= (real)0;
 cdel= (real)0;
 fill= (int)1;
 color= (int)1;
 yposition= (real)0;
 xposition= (real)0;
 itf = (string)““;
 ymin= (real)0;
 ymax= (real)0;
 xmin= (real)0;



11

 xmax= (real)0;
 print= (int)1;
 line= (string)““;
 log = (int)0;
 star= (real)0;
 new.window= (int)1;
 outfile= (string)““;
};

load = (list) {
 xdr = (string)““;
 rename= (string)““;
 yscale= (real)0.0;
 list= (int) 1;
 resize.left= (real)0.0;
 resize.right= (real)0.0;
 resize.new= (real)0.0;
 switch= (string)““;
};

option = (list) {
 library = (string) ““;
 libroot = (string) ““;
 defaults= (string)““;
 version = (string) ““;
};

solve = (list) {
 hours = (real) 0;
 minutes = (real) 0;
 seconds = (real)0;
 temperature = (real)0;
 tempfinal = (real) 0;
 cmodel = (string) ““;
};

 };

############################################################
#All the cards defaults here
############################################################
cards.defaults = (list) {

dbase = (list) {};
caminoLoad = (list) {};
field = (list) {};
graph = (list) {};
load = (list) {};
option = (list) {};
solve = (list) {};

};

############################################################
# The math list
############################################################
math = (list){
 grid = (list) {

interval.ratio= (real)1.5;
interface.tol= (real)0.001;
etch.overeps= (real)0.001;
etch.eps= (real)0.001;
expandx = (int) 0;

 };
 maxGSloop = (int) 10;
 LTE = (real) 1e-2;
 LTE.toler = (real) 1e-1;
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 time.control = (string)”trbdf2”;

 # All relative
 time.min = (real) 1e-8;
 time.extend = (real) 1.1;
 time.init = (real) 1e-6;

 max.color = (int) 256;
 memory.size = (int) 18;

 color-elements = (int) 1;

 noquads = (int) 0;

 plot.nx = (int) 121;
 plot.ny = (int) 101;
 plot.resolution = (real)0.005;
 plot = (list) {

ncolors = (int)20;
mincolor= (string)“blue”;
maxcolor= (string)“red”;
color.silicon= (string)“lightgrey”;
color.oxide= (string)“steelblue”;
color.nitride= (string)“darkgreen”;
color.poly= (string)“grey”;
color.bpsg= (string)“cornflowerblue”;
color.aluminum= (string)“navy”;
color.resist= (string)“red”;

 };
};

############################################################
#The physics list
############################################################
physics = (list){

qcharg= (real)1.602e-19;
kboltz= (real)8.62e-5;
celsius = (real)273.15;
silicon= (list)
{
 max.process.temperature= (real)1415;
 ni = (string)“silcni(T)”;
 bandgap= (string)“Eg=1.17-4.73e-4*((T*T)/(T+636))”;
 density= (real)2.33;
 native.oxide= (real).001;
 oxide.alpha= (real)2.2;
 spread.lateral= (real)0.66;
 default.tdel = (real)0.02;
 default.ldel = (real)0.02;
 default.thick = (real) 1.0;

 ############################################################
 # impurities for process simulation
 ############################################################
 boron = (list) {

dsign = (int)-1;
class = (string)“permanent”;

Dix = (string) “8.33e8/60 * exp( -3.43/kT)”;
Dip = (string) “2.5e9/60 * exp( -3.43/kT)”;

resistivity = (rarray) “Resistivity/siboron.res”;
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# Solubility = (string)“6e19*exp(-0.2/k*(1/T-1/1073))”;
evaporate = (string)“1.674e5/60*exp(-2.481/kT)”;

segregation-coeff.oxide.100 = (string)“2208*exp(-0.96/kT)”;
segregation-coeff.oxide.111 = (string)“1126*exp(-0.91/kT)”;
segregation-coeff.poly= (real) 1;
segregation-rate.poly= (real) 1e-3;

background= (real) 1e10;
tolerance= (real) 1e10;
positive= (int)1;

 math.default = (list) {
 implicit = (int) 1;
 depends = (string)“psi,boron*”;
 setup = (string) “matrix.init”;
 refresh = (string) “matrix.init”;
 teardown = (string) “matrix.quit”;

 transient=(list) {
order=(string) “antimony,arsenic,boron,phosphorus,psi”;
maxNewton = (int) 10;
topNewton = (real) 1e-2;
botNewton = (real) 1e-7;
NewtonUpd = (real) 0.05;
NewtonChk = (real) 1e5;
NewtonRhs = (real) 0.1;
NewtonMaxUpd= (real) 1e9;
NewtonAbsRhs= (int)1;
# All relative
time.min = (real) 1e-8;
time.extend = (real) 1.1;
time.init = (real) 1e-6;
#
nterm= (int)3;
term0= (list) {
 geoterm = (string)“box-laplacian”;
 style = (string)“box”;
 phyterm = (string) “equilflux”;
 sol = (string)“antimony,arsenic,boron,phosphorus”;
 dep = (string)“antimony*,arsenic*,boron*,phosphorus*,psi”;
 deptype= (string) “arsenic:arsenic*=both”;
 deptype= (string) “arsenic:psi=both”;
 deptype= (string) “antimony:antimony*=both”;
 deptype= (string) “antimony:psi=both”;
 deptype= (string) “boron:boron*=both”;
 deptype= (string) “boron:psi=both”;
 deptype= (string) “phosphorus:phosphorus*=both”;
 deptype= (string) “phosphorus:psi=both”;
};
term1= (list) {
 geoterm= (string) “box-laplacian”;
 style= (string) “box”;
 phyterm= (string) “impflux”;
 sol = (string) “psi”;
 dep = (string) “psi”;
 deptype= (string) “psi:psi=grad”;
};
term2 = (list) {
 geoterm = (string) “diagonalweight”;
 phyterm = (string) “poissonflux”;
 sol = (string) “psi”;

dep  = (string) “electrons,holes,arsenic*,antimony*,boron*,phosphorus*”;
 deptype = (string) “psi:electrons=conc”;
 deptype = (string) “psi:holes=conc”;
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 deptype = (string) “psi:arsenic*=conc”;
 deptype = (string) “psi:antimony*=conc”;
 deptype = (string) “psi:boron*=conc”;
 deptype = (string) “psi:phosphorus*=conc”;
 };
elimination= (list) {

order = (string) “electrons,holes,antimony*,arsenic*,boron*,phosphorus*”;
 nterm = (int) 2;
 term0 = (list) {
 geoterm = (string) “diagonalweight”;
 phyterm = (string) “set_active”;
 sol = (string) “antimony*,arsenic*,boron*,phosphorus*”;
 dep = (string) “antimony,arsenic,boron,phosphorus”;
 deptype = (string) “antimony*:antimony=conc”;
 deptype = (string) “boron*:boron=conc”;
 deptype = (string) “phosphorus*:phosphorus=conc”;
 deptype = (string) “arsenic*:arsenic=conc”;
 };
 term1= (list) {
 geoterm = (string) “diagonalweight”;
 phyterm = (string) “elim_carrier”;
 sol = (string) “electrons,holes”;
 dep = (string) “psi”;
 deptype = (string) “electrons:psi=conc”;
 deptype = (string) “holes:psi=conc”;
 };
 };

 };
};

 };
 arsenic = (list) {

dsign = (int)1;
class = (string)”permanent”;

Dix = (string) “3.96e8/60 *exp(-3.44/kT)”;
Dim = (string) “7.2e10/60 *exp(-4.05/kT)”;

resistivity = (rarray) “Resistivity/siarsenic.res”;

evaporate = (string) “9.0e5/60*exp(-1.99/kT)”;

segregation-coeff.oxide= (real) 800;
segregation-coeff.poly= (real) 1;
segregation-rate.poly= (real) 1e-3;

background= (real) 1e10;
tolerance= (real) 1e10;
positive= (int) 1;
beta= (string) “7e-66*exp(1.05/kT)”;
m = (real) 4.0;

math.default = (list) {
 depends = (string) “psi,arsenic*”;
 SeeAlso = (string) “../../boron/math.default”;
};

 };

 phosphorus = (list) {
dsign = (int)1;
class = (string)”permanent”;

Dix = (string) “2.31e10/60 * exp(-3.66/kT)”;
Dim = (string) “2.664e10/60 *exp(-4.0/kT)”;
Dimm= (string) “2.652e11/60 *exp(-4.37/kT)”;
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resistivity = (rarray) “Resistivity/siphosphorus.res”;

evaporate = (string) “9.0e5/60*exp(-1.99/kT)”;

segregation-coeff.oxide= (real) 10;
segregation-coeff.poly= (real) 1;
segregation-rate.poly= (real) 1e-3;

background= (real) 1e10;
tolerance= (real) 1e10;
positive= (int) 1;
beta= (string) “2.04e-41”;
m = (real) 3.0;

math.default = (list) {
 depends = (string) “psi,phosphorus*”;
 SeeAlso = (string) “../../boron/math.default”;
};

 };

 antimony = (list) {
dsign = (int)1;
class = (string)”permanent”;

Dix = (string) “1.28e9/60 * exp(-3.65/kT)”;
Dim = (string) “9.0e10/60 * exp(-4.08/kT)”;

resistivity = (rarray) “Resistivity/siantimony.res”;

evaporate = (string) “9.0e5/60*exp(-1.99/kT)”;

segregation-coeff.oxide= (real) 10;
segregation-coeff.poly= (real) 1;
segregation-rate.poly= (real) 1e-3;

background= (real) 1e10;
tolerance= (real) 1e10;
positive= (int) 1;

math.default = (list) {
 depends = (string) “psi,antimony*”;
 SeeAlso = (string) “../../boron/math.default”;
};

 };

 # potential & carriers
 psi = (list) {

class = (string) “permanent”;
background = (real) 0.0;
scale = (real) 1;
tolerance = (real) 1e-2;
positive = (int) 0;
Dix = (string) “11.9*8.864e-14*1e8”;
math.default = (list) {
 depends = (string) “electrons,holes”;
 implicit = (int) 1;
 setup = (string) “matrix.init”;
 refresh = (string) “matrix.init”;
 teardown = (string) “matrix.quit”;

 steady=(list) {
SeeAlso = (string) “../../../boron/math.default/transient”;

 };
 };

 };
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 electrons = (list) {
class = (string) “permanent”;
background = (real) 1.0e-10;
esign = (real)-1;

 };

 holes = (list) {
class = (string) “permanent”;
background = (real) 1.0e-10;
esign = (real) 1;

 };

 # active concentrations
 # only reason that these elimination variables

 # are defined is in order to keep them around
 # afterwards for plotting and passing to device simulators.
 boron* = (list) {

class = (string) “permanent”;
background = (real) 1.0e10;

 };
 phosphorus* = (list) {SeeAlso = (string) “../boron*”;};
 antimony* = (list) {SeeAlso = (string) “../boron*”;};
 arsenic* = (list) {SeeAlso = (string) “../boron*”;};

};
 };
};


