Bell Laboratories
Lucent Technologies

subject: Programmer’s guide to the PROPHET database date: November 28, 1996

from: Conor S. Rafferty
11125
MH 2D-303B

ABSTRACT

This memorandum documents the database subroutines in the PROPHET simulator. The database
provides access to material coefficients and tables, numerical parameters and control optionsin a
standardized way. The database is heirarchically organized and has an inheritance facility.

1. Introduction

The simulator PROPHET is a computer program for the solution of the partial differential equations
(PDEs) which arisein modeling semiconductor devices and processes.Any such simulator contains
a number of physical models with coefficients which have been calibrated in the past or which
require tuning by the simulator user. The coefficients may take the form of numbers, temperature
dependent formulae, or tables of measured data. The first function of the PROPHET database is to
store such coefficients. In addition it has been found convenient to store all control information for
the simulator in the same database, including a description of the user’ sinput file, a description of
the set of equations to be solved, and parameters for the numerical methods. All miscellaneous
information pertaining to a simulation, as opposed to structured information such as the grid and
matrix, are stored in the database.

The dataisorganized heirarchically. At thetop level, the heirarchy is structured as shown in Fig 1.

root { %top of tree
useri nput { % user’s parsed input file
cardl { % first comuand
par ml % paraneters of first comrand
par n2
}
card2. .. % second comrand
}
options { % control options, e.g.
ti mestep % whether to print tinmesteps
}
library { % coefficient library
physics { % physi cal coefficients
silicon { % organi zed by materi al
ni % e.g. intrinsic nunber
boron { % solution quantity in material
Di x % their paranmeters, e.g.
} % di ffusivity
}
mat h { % nuneri cal paraneters
grid.ratio % e.g. maximum size ratio of
} % adj acent grid cells
cards { % recogni zed comrands
sol ve {
time % par aneters of “solve” comand
t emperature
cards. defaults {
}
}
}

Figure 1: Top level of PROPHET database.

The top level objects are the user’s input file, options for this particular run, and the library. The

library isdivided into physical and numerical parameters, and the list of recognized commands and
their defaults is also stored here. Physical parameters are organized according to material, with
solution quantities appearing under the materials in which they are to be solved. The information
on what equationsto solve for a particular quantity is stored as a property of that quantity; e.g. the
default solution method for boron is stored at |ibrary/ physics/silicon/boron/

mat h. def aul t . Seereference[1] for details of PDE specification.

The advantages of this storage scheme is uniform and organized access to all simulation
parameters, rather than the ad-hoc common blocks and static variables of, for instance, SUPREM4.
It also means that new modules can access user-defined parameters without making any
arrangementsfor their storage or transmittal elsewhere in the code. Only the subroutine requesting
a parameter knows of its existence. Typicaly a single line of code is required to request a
parameter, and the request is answered by onelinein the user’ sinput file defining the value of that
parameter, or one line in the stored library. The low overhead in defining new parameters is
intended to discourage module programmers from hard coding coefficients or decisions, leaving
as much as possible accessible outside the binary.

The following sections will describe the data structures of the database, the procedures used to
access them, the i/o facilities of the database, and some higher level access functions. While not
strictly a part of the database, the expression parser is also described.

2. Datastructures

The basic object of the databaseisapr operty. A property isatyped union. The current types
are real, integer, string, property list, integer array and real array (pREAL, pl NT, pSTRI NG
pLI ST, pl ARRAY, pRARRAY)andtheir unionnamesareval . rval, val.ival, val.sval,
val .lval, val.iaval, val.raval.

A property list (pl i st) isthe organizing object of the database; it contains an array of names and
an array of properties. The heirarchy is constructed by putting a property list on aparent list. It is
permitted (at |east currently) to have multiple properties of the same name on alist.

Aninteger array has adimension, ashort array of bounds, and an array of integer data. A real array
is the same except that the data is real. See Figure 2. The tyepdef r eal translatesto f | oat or
doubl e depending on the hardware architecture.

Thexfi | e field of aproperty is reserved for those properties whose contents may not have been
read into memory yet. This allows an integer array or real array to be inserted into the database
heirarchy while postponing the possibly time-consuming input of its contents. At the time it is
actually referenced, thef i | | _pr op subroutine retrieves the data.

Each property list maintains a pointer to its parent, in order to support a“..” construction similar to
the Unix file system. The nal | oc field tracks the size of the currently allocated arrays of names
and properties; the nused field tracks how many are actually being used.

Theroot of the heirarchy isaproperty pointer calledr oot pr op. Itstypeisaproperty list on which
the “userinput”, “library” and “options’ lists sit. It isinitialized by thendb_i ni t call. The macro
root | i st smplifiesreferencesto thelist field in the root property.

The internal data structures of the database should not be referenced outside the database code
itself. The access routines which add and delete properties and property lists are described next.

property

enum type

val (ival,rval,sval,lval,iaval,raval)

char* xfile

pli st
plist *parent
nal | oc nused
names Props rarray 2 |3
i i dim
bound

“namel” propertyl dat a

“nane2” property2 j_» 1.0 | 14. | 42.

“nane3” property3 57. 57. 57.

Figure 2. Data structures.

3. Database access subroutines.
The database has the following access subroutines, listed in table 1.
The subroutine count _pr oper ti es returns the number of properties on alist.

The subroutine get _| ocal _property returns a property by name from a property list. The
property must exist in the list itself and not be inherited. A null pointer is returned if the nameis
not found. If there are multiple properties of the same name, the first such property is returned.

The subroutine get _next _| ocal _property alowsatraversal of all the propertiesin alist. If
thest art property isnull, thefirst property is returned, else the next property after the given one
is returned. If the st art property does not belong to the current property list, the results are
undefined.

The subroutine get _property_by_i ndex returns a property by index in the list. The index
begins at one.

The subroutine get _pr operty_name returns the name of a property by index in the list. The
index begins at one.

The subroutine get _pr oper ty isthe main access function. Given alist and a name, it looks up
the name and returns a pointer to the property if it exists. If it does not exist, thelist is checked for
aproperty called SeeAl so. That property isastring pointing at another list through acombination
of “..” and “/” similar to a Unix symbolic link. If found, that other list is then searched for the
desired name. The procedure is recursive. Note that, unlike a symbolic link, a SeeAl so pointer

i nt count _properties(plist *list)

property* get _| ocal _property(char *nanme, plist *list)

property* get _next _| ocal _property(char* name, plist* list,
property* start)

property* get _property by index(plist* list, int index)

char* get _property_name(plist* list, int index)

property* get _property(char* nane, plist *list)

property* find property(char* pathname, plist *list)

property* fill_prop(property *p)

property* put | ocal _property(char* nane, plist* list)

plist* put local _list(char* nanme, plist* |ist)

i nt del ete_l ocal _property(char* name, plist* |ist)

i nt delete_plist(char* nane, plist* list)

i nt deep_del ete plist(char* nane, plist* |ist)

i nt clear_plist(plist* list)

i nt deep_clear _plist(plist* list)

plist* find list(char* path, plist* list)

i nt ndb_init ()

i nt ndb_check(plist* list, char *prefix)

Table 1 - database access subroutines

always references a property list, not a property.

The subroutine f i nd_property issimilar to get _property, except that it takes as argument
not a simple name but a pathname including any combination of “..”, list names, and “/” to arrive
at avalid destination. It returns a pointer to a property. It ismost frequently used starting at the root
of the heirarchy tree

find_property(“library/physics/silicon/boron/Di x”, rootlist)
to retrieve properties from the library, but can aso be used to locate properties relative to a leaf
property. Thisisthe how the SeeAl so mechanism operates.

The subroutine fi | | _prop causes an array property to be filled from file, if it has not yet been
read in. It has no effect on other properties. It returnsthe property being operated on, or null if there
was a problem reading the array’ s contents.

The subroutine put _| ocal _property adds a new property to alist and returns a pointer to it.
The property begins life with a type of pNONE, and a type should be immediately assigned on
return.

The subroutine put _| ocal _| i st putsasublist on agiven list. It returns alist, that is, a pointer
to thelist field of the newly created property.

The subroutine del et e_| ocal _property removes a property from alist. It returns O or -1 for
success or failure. If the property isalist, it can only be deleted if al its entries have been del eted.

The subroutinecl ear _| i st removes all the properties of alist, and returns O or -1.

The subroutine del et e_pl i st combines the previous two functions by first clearing a property
list of its properties, and then removing thelist itself from its parent. It returns either O for success,
-1 for being unable to perform the actions, or -2 if the given name exists but does not refer to alist.

The subroutinedeep_cl ear _pl i st removesall the properties of alist, and on finding any lists,
enters them and removes them also.

Thesubroutinedeep_del et e_pl i st notonly clearsalist and al itssublists, but removesthelist
itself from its parent.

To clarify, the cl ear functions remove the properties from alist; the del et e functions remove
the list itself.

The subroutine f i nd_I i st takes a pathname and returns a list on which the requested property
can be created or modified. The property need not yet exist. Although not necessary for using the
routine, the mechanism by which it works is worth comment. The procedure is straightforward in
the case of aproperty which exists; thelist to which it belongsisreturned. In the case of aproperty
which exists only by virture of a SeeAl so pointer, a “shadow tree” is constructed (Fig. 3). The

Before execution
| i brary/ physics {

After execution
I'i brary/ physics {

silicon { silicon {
boron { boron {
Dx = 4.2 Dix = 4.2
} }
poly { poly {
SeeAlso “../silicon” SeeAlso “../silicon”
} boron {
} SeeAl so “../silicon/boron”

}

Figure 3. Construction of shadow tree, before and after executing find_list(“library/
physi cs/ pol y/ boron/ Di x")

shadow tree has one level for each level of the real tree holding the SeeAl so’d property, with a
link at each level to the orginal tree. The bottom list on the shadow tree is returned (that is,
l'i brary/ physi cs/ pol y/ bor on). Thisalowsthe user to create, in thisexample, al i brary/
physi cs/ pol y/ boron/ Di x different from that of silicon, but with all other poly properties
continuing to be inherited from silicon. In the case of find_list(“library/physics/
silicon/boron/Di x"), the simple list |ibrary/physics/silicon/boron would be
returned.

The subroutine ndb_i ni t () createsaroot property and makesit of type pLI ST, with O entries,
and points the global variable r oot pr op at the root property.

The subroutine ndb_check() performs various database self-consistency checks, including that

every property hasaname and type, that array propertieshavevalid file pointers, and that SeeAl so
properties refer to valid destinations.

4. Database input/output functions

The following subroutines carry out database i/o functions.

i nt ndberr(char* string, argl, arg2)

i nt ndbl og(char* string, argl, arg2)

i nt ndbset | og(char* nane)

i nt dunp_list(plist* list, FILE* fd, int darray)
i nt do_ndbparse(property* prop, char* fil enane)

The subroutine ndber r prints error messages to st derr and also in alog file if it has been
opened. All error messages are intended to go through ndber r .

The subroutine ndbl og prints run information to st dout and also in the log file if it has been
opened. All output isintended to go through ndbout .

Bothndber r and ndbout resemblethepri nt f functionin C; thefirst argument isaformat string
and the remaining arguments are inserted into the output in printable form according to the format
string. The interpretation of the string isthe same asinprint f .

The subroutinendbset | og assignsalog file to which both stdout and stderr are copied. Setting a
log file allows al the error and output of a run to be collected in sequence in one file without the
usual buffering sequence problems. St dout is usually then redirected to /dev/null, and only
st der r apears on the screen.

The subroutinedunp_| i st dumpsthe contents of alist to astream. It isuseful for saving aprivate
copy of the database after a number of user commands have modified it. The file can then be used
as input to a subsequent run. The darray flag indicates whether to dump arrays raw (1 for
inspection) or simply a pointer to the file from which the array came (O for reuse in subsequent
runs).

The subroutine do_ndbpar se takes a pointer to alist property and builds a tree by reading the
filename. Thefileformat is defined by avery small YACC grammar; an example can befound in the
appendix. It isusually used to initialize the database from file; however it can be subsequently be
used to extend it by reading subtrees onto leaves of the original tree.

5. Expression parser

A second YACC grammar exists to parse arithmetic expressions. The objects on which the parser
operates can be either scalars or vectors; all operations are carried out componentwise. The
language alows variables to be defined for reference on subsequent calls. The parser is
conveniently used for database quantities which are afunction of, for instance, temperature. A first
call establishesthe variable kT in the parser’ s symbol table; subsequent calls can evaluate a series
of expressions such as42*exp(- 3. 0/ kT) .

The grammar consists of the usual numerical expressions, terminated with a semicolon, and
optionally preceded by “nane =" in order to store the result in the parser’s symbol table under
“nanme”. Exponentiation is indicated by a caret (*) and the constantsPI, E, GAMVA and DEG

(180/m) are provided. The following functions are provided: sin, cos, |og, |0gl0, exp,
erfc, erf, sqrt, abs, normal, mn, max, silcni, silceg.Givenavector, nor nal
returns a copy with al components scaled by the largest magnitude. M n and nax return vectors
with all components equal in size to the minimum or maximum of the given vector. Si | cni and
si | ceg are specialized functions for the intrinsic number and energy gap in silicon as afunction
of temperature (which have no closed form expression). The grammar also allows references to
database variables through the syntax ${ pat hnane} ; the pathname is interpreted relative to the
database root property. Any mixture of vectors and realsis allowed provided all vectors have the
same length; the result vector will be that length also.

The expression parser subroutines are

i nt vexpr(char* string, int n, real** x)

i nt synReal (char* nane, real val)

i nt synVec(char* nanme, int len, real* val)
i nt synClean(int |evel)

i nt symnit()

i nt symNode(partition* thePart)

i nt eval coeff(property* prop, real *val ue)

Themain entry point isthe subroutinevexpr . It evaluatesastring using scalars and vectors already
installed in the symbol table. It returns avector of length either one or the length of the vectors used
in the expression. Thisvector ismal | oc’ed and should be f r ee’d when no longer in use.

The subroutine synReal installs a named scalar in the symbol table.
The subroutine synVec installs a named vector in the symbol table.

The subroutine syntCl ean removes all symbol table objects higher than the given level from the
symbol table. Each object in the symbol table has a“level”; the lower level, the more permanent.
Level O are the constants and functions. Level 1 is the normal variables created by assignment
statements. Level 2 or higher are for variableswhich are intended to be of atemporary nature. Both
synReal and synVec install symbols a Level 2. Thus the calls synReal (“x”, 1.0) and
vexpr(“x=1.0;", &n, &realp) havesimilar results except that the former creates x with a
level of 2 and the latter createsit with alevel of 1. A call to synd ean(2) would clear the former
case but not the latter.

The subroutine sym ni t installs the standard constants and functions in the symbol table.

The subroutine symNode is a PROPHET-specific function which installs all the solution quantities
and node coordinates as vectors in the expression parser symbol table. This can be used in
calculating functions for plotting, for instance.

The subroutine eval coef f evaluates a property, whether it is real, integer, string, or array, and
calculates areal number. The return value is zero for success, one if given anonexistent property,
and minus one if the property existed as a string but could not be parsed. If the property isatable,
it is assumed to represent a table of some quantity as a function of temperature, and the symbol T
isretrieved from the symbol table to use as alookup index in the property’ s table contents.

6. Higher level subroutines

A number of convenience functions are layered over the core of the database. Many exist for
compatability with the first generation database. Among them are the following.

i nt dbase_error(int type, char* nmessage, char* extra)
property* findLib (char* nane)

property* findDB(char* nane, int noWarning)

FORTRAN sub- l'ibeval (s, X)

routine

FORTRAN sub- dberO(s1, s2)

routine

The subroutine dbase_er r or isan obsolete interface to ndber r ; the latter is preferred.

Thesubroutinef i ndLi b(s) isashorthand for fi nd_property(concat (“library/”, s),
rootlist).

The subroutinef i ndDB isalso ashorthand for f i nd_pr operty(nane).Inadditionit causesa
warning to be printed if the property is not found and noWar ni ng argument is 0. Like
find_property,itreturnsanull pointer if the property cannot be found.

The subroutine |i beval alows library parameters to be evaluated in FORTRAN. It calls
fi nd_property on the string name and then eval coef f to evaluate the property, returning a
real number.

The subroutinedber 0 isaFORTRAN subroutine to allow FORTRAN output to go through the normal
log mechanism (and helps avoid linking the FORTRAN I/O libraries!)

7. Summary

The PROPHET database provides organi zed access to the parameters and coefficients which govern
asimulation. Subroutines to maintain and modify a heirarchy of parameters are provided, as well
as an expression parser to evaluate strings stored in the database. Experience since 1990 has shown
the database to be a convenient and powerful component of a modern PDE solver.

10

8. Appendix
The following is a simple database which can be read by do_ndbpar se

library = (list) {
BRI R R i
#Al'l the cards here

HH7

cards = (list) {
dbase = (list) {

print = (int) 1;
printval = (int) 1;
printlist = (int) 1;
printall = (int) 1;
nodi fy = (int) 1;
delete = (int) 1;
deletelist = (int) 1;
create = (int) 1;
createlist = (int) 1;
createdir = (int) 1;
deletedir = (int) 1;
sync = (int) 1;

name (string) ““;
file = (string) ““;
ival = (int) O;

rval = (real) O0;

sval = (string) ““;
fval = (string) ““;
from= (string) ““;

type = (string) ““;
list = (string) ““;
check = (int) 1;
domain = (string) ““;
tenperature = (real)O;
pressure = (real)O;

}s

cam noLoad = (list) {
nane = (string) ““;

b

field = (list) {
set = (string) ““;
value = (string) ““;

}s

graph = (list) {

el ement= (string)“"“;
axis = (int)1;
boundary= (int)1;
material s= (int)1;
gridline= (int)1;
gridpoint= (int)1;
contour= (int)1;
cm ni mume (real)O0;
cmaxi mume (real)O;
cdel = (real)0;
fill= (int)1;
color= (int)1;
yposi tion= (real)O;
xposition= (real)O;
itf = (string)“";
ym n= (real)O;
ymax= (real)O;
xmn= (real)O0;

}s

11

xmax= (real)O;
print= (int)1;
line= (string)“";
log = (int)O0;

star= (real)O0;
new. wi ndow= (int)1;
outfile= (string)“"“;

h

oad = (list) {

xdr = (string)“"“;
renanme= (string)“";
yscal e= (real)O0.0;
list= (int) 1,
resize.left= (real)O0.0;
resize.right= (real)O0.0;
resize.new= (real)O0.0;

“u

switch= (string)“"“;

s

option = (list) {
library = (string) “*;
libroot = (string) ““;
defaul ts= (string)“"“;

version = (string) ““;

h

solve = (list) {

hours = (real) O;
mnutes = (real) O;
seconds = (real)O;
temperature = (real)O;
tenpfinal = (real) O;
cnodel = (string) ““;

h

g g g g g gy

R L L L b L L L L L R TR R R R TR

#Al |

the cards defaults here

HHHH R R R R R
cards. defaults = (list) {

}s

dbase = (list) {};
cami noLoad = (list) {};
field = (list) {};

graph = (list) {};
load = (list) {};
option = (list) {};

solve = (list) {};

BHHHHH R R R R R
The math |i st
BRI R i R i
math = (list){

grid = (list) {

}s

interval .ratio= (real)l.5;
interface.tol= (real)0.001;
etch. overeps= (real)0.001;
etch. eps= (real)0.001;
expandx = (int) O;

maxGSl oop = (int) 10;
LTE = (real) le-2;
LTE. toler = (real) le-1;

12

tinme.control = (string)”trbdf2”;

A

I relative

time.mn = (real) 1le-8;
time.extend = (real) 1.1;
tine.init = (real) le-6;

nmax.

color = (int) 256;

menory.size = (int) 18;

color-elenents = (int) 1,

noquads = (int) O;

pl ot.
pl ot.
pl ot.

pl ot

nx = (int) 121;
ny = (int) 101;
resolution = (real)O0.005;

= (list) {

ncol ors = (int)20;

m ncol or= (string)“blue”;

maxcol or= (string)“red”;
color.silicon= (string)“lightgrey”;
col or. oxi de= (string)"“steel blue”;
color.nitride= (string)"“darkgreen”;

color.poly= (string)“grey”;
col or. bpsg= (string)"“cornfl owerblue”;
col or. al um nume (string)“navy”;
color.resist= (string)“red”;

#The physics |ist

BHEHEFEHEH R R R R R R R R R R R R R

physi
q
k
c
s

{

cs = (list){

charg= (real)1.602e-19;
boltz= (real)8. 62e-5;

el sius = (real)273.15;
ilicon= (list)

max. process. tenperature= (real) 1415;

ni = (string)“silcni(T)";

bandgap= (string)“Eg=1.17-4.73e-4*((T*T)/(T+636))";
density= (real)2.33;

native. oxi de= (real).001;

oxi de. al pha= (real)?2.2;

spread. | ateral = (real)O0. 66;

default.tdel = (real)0.02;

default.ldel = (real)0.02;

default.thick = (real) 1.0;

HHHBHHBHHBHH BB R R R R R R R R
inpurities for process sinulation

g g g g gy
R L L L b L L L L R IR TR R R R T

boron = (list) {
dsign = (int)-1;
class = (string)"“permanent”;

Di x (string) “8.33e8/60 * exp(-3.43/kT)";
Dip = (string) “2.5e9/60 * exp(-3.43/kT)";

resistivity = (rarray) “Resistivity/siboron.res”;

13

Solubility = (string)“6el9*exp(-0.2/k*(1/T-1/1073))";
evaporate = (string)“1l.674e5/60*exp(-2.481/KkT)";

segregation-coeff.oxide. 100 = (string)"“2208*exp(-0.96/KT)";
segregation-coeff.oxide. 111 = (string)“1126*exp(-0.91/KT)";
segregati on-coeff.poly= (real) 1;

segregation-rate.poly= (real) 1le-3;

background= (real) 1el0;
tol erance= (real) 1elO;
positive= (int)1;

mat h. def aul t

(list) {

implicit = (int) 1;

depends

(string)“psi, boron*”;

setup = (string) “matrix.init”;

refresh

(string) “matrix.init”;

teardown = (string) “nmatrix.quit”;

transient=(list) {

dep

order=(string) “antinony, arseni c, boron, phosphorus, psi”;
maxNewt on = (int) 10;

topNewton = (real) le-2;
bot Newton = (real) 1le-7;
Newt onUpd = (real) O0.05;
Newt onChk = (real) 1eb5;
Newt onRhs = (real) O0.1;

Newt onMaxUpd= (real) 1e9;
Newt onAbsRhs= (int)1;
Al relative
time.mn = (real) le-8;
time.extend = (real) 1.1;
tine.init = (real) le-6;
#
nternr (int)3;
ternD= (list) {
geoterm = (string)“box-1aplacian”;
style = (string)“box”;
phyterm = (string) “equilflux”;
sol = (string)“antinony, arseni c, boron, phosphorus”;
dep = (string)“antinmony*, arseni c*, boron*, phosphorus*, psi”;
deptype= (string) “arsenic:arseni c*=both”;
deptype= (string) “arsenic:psi=both”;
deptype= (string) “antinony:antinmony*=both”;
deptype= (string) “antinony: psi=both”;
deptype= (string) “boron:boron*=both”;
deptype= (string) “boron:psi=both”;
deptype= (string) “phosphorus: phosphorus*=both”;
deptype= (string) “phosphorus: psi=both”;
s
terml= (list) {
geoterm= (string) “box-Iaplacian”;
style= (string) “box”;
phyterm= (string) “inpflux”;
sol = (string) “psi”;
dep = (string) “psi”;
deptype= (string) “psi:psi=grad”;
}
term2 = (list) {
geoterm = (string) “diagonal wei ght”;
phyterm = (string) “poissonflux”;
sol = (string) “psi”;
= (string) “electrons, hol es, arseni c*, anti nony*, bor on*, phosphor us*”;
deptype = (string) “psi:electrons=conc”;
deptype = (string) “psi:hol es=conc”;

}s

14

deptype = (string) “psi:arsenic*=conc”;
deptype = (string) “psi:antinony*=conc”;
deptype = (string) “psi:boron*=conc”;
deptype = (string) “psi:phosphorus*=conc”;
i

elimnation= (list) {

order = (string) “el ectrons, hol es, anti nony*, arseni c*, bor on*, phosphorus*”;

nterm= (int) 2;

ternD = (list) {

geoterm = (string) “diagonal wei ght”;

phyterm = (string) “set_active”;

sol = (string) “antinony*, arsenic*, boron*, phosphorus*”;
dep = (string) “antinony, arseni c, boron, phosphorus”;
deptype = (string) “antinony*:antinony=conc”;

deptype = (string) “boron*:boron=conc”;

deptype = (string) “phosphorus*: phosphorus=conc”;
deptype = (string) “arsenic*:arsenic=conc”;

terml= (list) {

geoterm = (string) “diagonal weight”;
phyterm = (string) “elimcarrier”;

sol = (string) “electrons, hol es”;

dep = (string) “psi”;

deptype = (string) “electrons:psi=conc”;
deptype = (string) “hol es: psi=conc”;

s
H
}
s
arsenic = (list) {
dsign = (int)1;
class = (string)”permanent”;

}s

Dix = (string) “3.96e8/60 *exp(-3.44/kT)";
Dim= (string) “7.2el0/60 *exp(-4.05/kT)";

resistivity = (rarray) “Resistivity/siarsenic.res”;
evaporate = (string) “9.0e5/60*exp(-1.99/kT)";

segregati on-coeff. oxi de= (real) 800;
segregation-coeff.poly= (real) 1;
segregation-rate.poly= (real) 1le-3;

background= (real) 1el0;

tol erance= (real) 1elO;

positive= (int) 1;

beta= (string) “7e-66*exp(l.05/kT)";
m = (real) 4.0;

mat h. default = (list) {

depends = (string) “psi,arsenic*”;

SeeAl so = (string) “../../boron/ math.default”;
s

phosphorus = (list) {

dsign = (int)1;
class = (string)”permanent”;

Dix = (string) “2.31el10/60 * exp(-3.66/kT)";
Dim= (string) “2.664e10/60 *exp(-4.0/kT)";
Dim¥ (string) “2.652ell/60 *exp(-4.37/kT)";

b

ant i nony

}s

15

resistivity = (rarray) “Resi

stivity/siphosphorus.res”;

evaporate = (string) “9.0e5/60*exp(-1.99/kT)";

segregation-coeff.oxide= (real) 10;
segregati on-coeff.poly= (real) 1;
segregation-rate.poly= (real) 1le-3;

background= (real) 1el0;
tol erance= (real) 1elO;
positive= (int) 1;
beta= (string) “2.04e-41";
m = (real) 3.0;

mat h. default = (list

depends
SeeAl so

h

dsi gn
cl ass

Dix = (string)
Dim = (string)

(string)
(string)

= (list) {

(int)1;
(string)”permanent”;

resistivity

) A

“psi, phosphorus*”;
./../boron/ math. defaul t”;

= (rarray) “Resi

“1.28e9/60 * exp(-3.65/kT)";
“9.0e10/60 * exp(-4.08/kT)”";

stivity/siantinmony.res”;

evaporate = (string) “9.0e5/60*exp(-1.99/kT)";

segregation-coeff. oxide= (real) 10;
segregati on-coeff.poly= (real) 1;
segregation-rate.poly= (real) 1le-3;

background= (real) 1el0;
tol erance= (real) 1elO;
positive= (int) 1;

mat h. default = (list

depends

b

potenti al
= (list) {

class = (string) “permanent”;

psi

backgroun

(string)

& carriers

d

= (real)

scale = (real) 1;
(real) 1le-2;

tol erance
positive

Dix = (string)

(int) O;

mat h. default = (list
depends = (string)

) |

“psi, anti nony*”;

0.0;

) A

SeeAlso = (string) “../../boron/ math.default”;

“11.9*8. 864e-14*1e8";

“el ectrons, hol es”;

“matrix.

init”;

implicit = (int) 1;
setup = (string) “matrix.init”;
refresh = (string)
teardown = (string)

steady=(list) {
SeeAl so = (string) “../.

“matrix.quit”;

./../boron/ math. default/transient”;

16

electrons = (list) {
class = (string) “permanent”;
background = (real) 1.0e-10;
esign = (real)-1;

}s

holes = (list) {
class = (string) “permanent”;
background = (real) 1.0e-10;
esign = (real) 1;

}s

active concentrations
only reason that these elimnation variables
are defined is in order to keep them around
afterwards for plotting and passing to device sinulators.
boron* = (list) {
class = (string) “permanent”;
background = (real) 1.0elO0;

b

phosphorus* = (list) {SeeAlso = (string) “../boron*";};
antimony* = (list) {SeeAlso = (string) “../boron*";};
arsenic* = (list) {SeeAlso = (string) “../boron*";};

