Bell Laboratories
Lucent Technologies
subject: Solving Partial Differential Equations date: December 5, 1997
with the PROPHET simulator

from: Conor S. Rafferty
MH 2D-303B
908 582 3575
conor @ ucent . com

R. Kent Smith
MH 2D-303C
908 582 7522
kentsm th@ ucent.com

Abstract

The PROPHET simulator is aframework to solve systems of partial differential equations (PDES)
intimeand 1,2 or 3 space dimensions. The ssmulator is designed with three main goals: efficiency,
geometric flexibility, equation extensibility. Thefirst two distinguish it from canned packages such
as Mathematica, which do not allow the use of arbitrary shapes or grids and are not tuned to solve
systems with 10° or 10° unknowns. The third distinguishes it from previous application-specific
simulators such as PISCES or SUPREM-4. The simulator has been used in production for severa
years to predict semiconductor manufacturing processes.

This memorandum focusses on the third goal, the ability to add new equations to the simulator. It
describes the language used to represent the equations, the available operators, the available
controls for influencing the solution process, and the procedure for adding new operators.

1. Introduction

The PROPHET simulator is aframework to solve systems of partial differential equations (PDES) in
timeand 1,2 or 3 space dimensions. (Ordinary differential equations can be solved as a degenerate
case). The PDEs are discretized using either finite elements or finite volume methods in space and
with implicit methods in time, reducing the differential equations to a large system of algebraic
eguations. At each timestep the algebraic equations are solved by Newton’s method. The matrix
resulting from the linearization is solved by sparse iterative or direct methods.

The simulator is intended for use in production applications, and is therefore designed with
maximum efficiency as agoal. The matrix assembly code takes advantage of the vector hardware
capabilities on machines such as the Cray YMP, alowing the solution of 3D problems in
reasonable time. Two dimensional problems are routinely solved on aworkstation. At Bell Labs,
PROPHET uses the Bell Labs Sparse Matrix Package (BLSMP) matrix solver for maximum
efficiency in the solution phase; release versions are interfaced to the SLES matrix solver from
Argonne which provides acceptable performance. Other solvers can easily be interfaced.

A second maor concern is to solve problems on arbitrary geometries. To this end, the
discretization library makes no assumptions about the domain but uses arbitrary combinations of
elements to describe its shape, such as triangles and quadrilaterals in 2D, tetrahedra, bricks or
prisms in 3D. There are limited built-in grid generation facilities, but arbitrary grids can be read
from other sources and cal culations performed on those domains.

The final major design goal is to allow new equations to be specified and solved by a user or a
model developer who may not be familiar with numerical methods. This memorandum focusses
onthethird goal, the ability to add new equations and even new types of equationsto the simulator.
This goal is particularly important for process simulation, where there is no consensus on the
underlying equations describing solid-state diffusion, and new models are frequently proposed. As
avery smple example of setting up equations, the system

[2Y +100Y = 0
Y(0) = 1
Y(1) =1

can be described with the syntax

system nane=t est4

+ sysvars=y

nt er mF3

t er m0=- 1*box_di v. | apfl ux(y|y) @silicon}

terml=dirichlet.default _dirichlet(0]y)@silicon/bulk,silicon/exposed}
t er n2=100. 0e0*nodal . copy(y|y) @silicon}

+ 4+ + +

Typicaly thereisoneline of description for each term in the PDE, and one line for each boundary
condition. The overall system is described in terms of a number of building blocks, each of which
takes as input either primary variables or temporary variables which can be created on the fly as
functions of other variables. Standard building blocksinclude the Laplacian, the drift operator, the
nodal lumping operator, dirichlet and radiative boundary conditions, thetime derivative, and so on.

PROPHET is designed so that new building blocks can be easily constructed.

The intention is that the code can be used by three categories of users: application users, model
developers, and primary devel opers. Application users are primarily interested in running the code
off-the-shelf but are interested in having some control over its execution, such as the choice of
linear method. Model developers are interested in adding new equations, either by combining
existing operators or building new operators according to specification. The primary developers
are concerned with the underlying database, the implementation of the discretization library and
the linear solvers, the grid structure, and so on. A block diagram of the simulator is shown below.

Application user <i
PP Main Program Graphics Parser
Modules
Model Developer Implant Etch Diffuse Deposit| etc.
(2.7k) (2.7k) (9k) (1.2k)
Library
(1.1k)
Gric_i Matrix Matri>_<
Primary developer :l/ Refinement (Aisg;ske)mbly Solution
Grid Representation / data structures (6k)

Database (2k)

Figurel. Overdl structure of PROPHET. The simulator is built on two major blocks, a hierarchical
database and a PDE solving library. Extramodulesto configureit as aprocess simulator are layered on top.
Numbers in parenthesis indicate lines of code.

In the subsequent sections, the decomposition of aPDE into its component partsis described, along
with its expression in terms of existing operatorsin the simulator. The existing operators are listed
and described. In the cases where new operators must be defined, the subroutine interface to such
operators is described.

2. Terminology and PDE Decomposition

The basic problem unit in PROPHET is the pdebl ock or block of coupled partial differential
equations. The equations are to be solved on a domai n which contains a number of fi el ds.
Fields may either be fixed fields, if there are no equations to be solved for them, or variable fields,
abbreviated as variables.

A block of equations is square; it necessarily has the same number of variables and equations. A

block can then be considered as an assembly of sub-terms, called pdet er ns; for instance a
reaction-diffusion system might consist of several reaction terms between various species, a
diffusion term for each species, and a transient term for each species. A term-by-term
decomposition of point defect diffusion equationsin silicon isgiven schematically in Figure 2. The
form of Figure 2 defines the sign convention in PROPHET; all termsin an equation are added to
create aresidual which will be converged to zero by a Newton iteration.

aC,
ot
aCy
ot

L@ (D,0C,) Hk(C,Cy—-CiCy) = 0

L ® (D,OC,)Hk(C,Cy—C,Cy) = 0

Figure2. A block of equationsrepresenting point defect diffusion in silicon (without impurities). The
block is decomposed into several terms: two laplacian terms, one binary-recombination term, and a
transient term.

The terms can be rectangular, not necessarily square, since they define a number n of outputsin
terms of minputs. Each of these pdet er s can be further subdivided into a geometrical part and
aphysical part (ageot er mand aphyt er m. In the above instance, the laplacian operator can be
considered as the combination of the divergence operator @ and the flux of point defects DOC .
The discretization defines the geometrical operators and the means of evaluating the gradients in
the flux; these would be handled differently in a finite element or finite volume implementation.
The construction of the flux from the gradients is, however, independent of the discretization and
isdefined in terms of textbook constructs such as the concentration of a quantity at a point in space
and the gradient of a quantity in space, a scalar and a vector respectively. The numerical work of
discretizing the equations, and the modeling work of defining fluxesin terms of concentrations and
gradients are thus separated in PROPHET; the separation can be symbolically written as follows.

PDEBLOCK = G,P, + G,P, + G4P,

M~ M~ M~
PDETERM1 PDETERM2 PDETERM3

3. System definition using the system command

The “syst enf command defines a new set of equations to be solved. Each system must have a
name, which is later referenced by the “sol ve” command.

The system gives two lists of variables. The first is the system variables, “sysvar s”, for which
differential equations are to be solved. The second list is called “t npvars” and lists any
temporary variables used in formulating the full system.

Theterms of the system are then listed. The number of termsisgivenfirst (“nt er ni') followed by

eachterm (“ternO, termd, ... "), starting at zero. The format of the termsis as follows.
optional multiplier
facﬂ» R*geot er mphytern(11,12,13]|01, A2, 3)@{r egi onl,r egi on2}
b 4 4 A
Thegeometric Thephysica Input Output Materials or interfaces
operator of the operator of the Fields Fields to which term applies
term term

The outputs of the term must be the names of system variables. The input variables can be system
variables, temporary variables, or other fields which exist in the structure but which are not
currently being solved.

The same syntax is used to specify both bulk operators and boundary conditions, as exhibited in
the specification of the dirichlet boundary conditions in the example of the introduction.

If temporary variables are defined, then a similar list of functions is given, with “nf uncti on”
and“f uncO, funcl, ... ” beingthelist of functions. The functions are defined with the same
syntax, without ageot er m The output variables of afunction must betemporary variables, while
the input variables can be system variables, temporary variables, or other fields which exist in the
structure which are not being solved. For example,

N _
at_Dm

could be written

system nane=ttt

sysvar s=n

t npvar s=sn

nt er mr2

t er mM0=box_di v. [apfl ux(sn| n) @silicon}
terml=transi ent.ddt(n|n)@silicon}
nfunc=1

funcO=sqgroot (n|sn)@silicon}

+ 4+ + + + 4+ +

The optional multiplier factor R multiplies the entire term. Thisis best used for setting the sign of
a term rather than providing coefficients to a PDE, since there is no way to specify that the
multiplier is different in one region or another.

When functions are given, usually each function generates one variable, though it is aso possible
for a function to simultaneously generate several variables. If a function takes as input other
variables which are in turn functions of system variables, the order of function specification is
important. The “first-level” functions which are defined in terms of system variables should be
defined first, then the “ second-level” functions, which are functions of only system variables and
“first-level” variables, should be given, and so on.

4. System definition via the PROPHET database

The system command is all that is necessary for building basic systems. This section describes a
little more of the internal workins in order to access more advanced system features such as
permanent systems, template systems and modifying numerical parameters. It can be skipped on
first reading.

Systems which are used frequently can be stored in the PROPHET database for access by other
users. In fact, the solver always uses a database description of a system; the syst emcommand
does its work by modifying the in-memory copy of the database.

The database has atree starting at library/math/systems. For each named system, for instance ABC,
thereisanentry | i brary/ mat h/ syst ens/ LABEL/ mat h. ABC/ pde. Normally the label
is the same as the system name. If no system is named on the sol ve command, but there is a
system. ../ mat h. def aul t/ pde, thenthat default system will be used in solving itsvariables.

For thesystemt t t described previously, the database entrieswould appear asfollows. It contains
the same information in a more verbose format.
[library/ math/systens/ttt/math.ttt/] pde = (list) {

SeeAlso = (string) “/library/ math/systens/default_nunerical paranmeters”;
order = (string) “n”;

spawn = (string) “n,sn”;

nterm= (int) 2;

termD = (list)

{
geoterm = (string) “box_div”;
phyterm = (string) “lapflux”;
equations = (string) “n”;
variables = (string) “sn”;
sign = (real) 1;

b

termL = (list) {
geoterm = (string) “transient”;
phyterm = (string) “ddt”;
equations = (string) “n”;
variables = (string) “n”;
sign = (real) 1;

elimnation = (list) {

order = (string) “sn”;

nterm= (int) 1,

termD = (list) {
geoterm = (string) “dummy”;
phyterm = (string) “sqrt”;
equations = (string) “sn”;
variables = (string) “n”;
sign = (real) 1;

s
s
The property pde isalist with the propertiesspawn, order, nterm and ter nNNNand
optionally el i m nat i on.

The property or der isalist of the system variables and corresponds to the sysvar s keyword
on the syst emcommand. As its name implies, the order is significant. The order in which the

names appear dictates the order in which the variables which will appear in the matrix, which
influences the block fill structure of the matrix and may affect convergence if the matrix is solved
iteratively. Generally variables which are linked to many other variables should appear late in the
list, so that variables with few links can be eliminated early.

The property “spawn” isalist of field names which should be created on the domain when this
sytemissolved, if they are not already present. The syst emcommand by default includes al the
system variables and temporary variables on the spawn list, but it can be overriden by giving an
explicit spawn list, or by using adbase command after the syst emcommand. There are cases
where the default behavior isnot desired, related to setting up general systemswhich refer to many
variables, only afew of which are present in the current domain. For instance, if a system solves
for“bor on, phosphor us, ar seni ¢” but only “bor on” is present in the domain, it would not
be desirable to generate phosphor us and ar seni c. In that case the spawn list would be
empty. Another feature of the“spawn” variableisconditional creation. A variable may be marked
as being necessary if another variable exists. An example of this usage is when distinguishing
between active and chemical species. A variable for the active species should only be generated if
the chemical speciesis present. The syntax for that is

spawn="psi , bor on*: bor on, ar seni c*: ar seni ¢, phosphor us*: phosphor us, anti nrony*: anti nony”

Thuspsi isawaysgenerated, but the active concentrationsbor on*, ar seni c*, etc are created
only as necessary.

The relation between the variable lists on the sy st emcommand and the variable listsin the PDE
property list is tabulated below.

Sy st emcommand pde property list
sysvars or der

t npvars el i m nati on/ order
[spawn=sysvar s+t npvar s] spawn

The property nt er mis an integer specifying the number of terms. The propertiest er ™\NN are
each lists, which should contain the propertiesgeot er m phyt er mequat i ons,vari abl es
and si gn. Thegeot er mand phyt er mproperties are the names of the appropriate subroutines
which implement this term. The equat i ons property is a string containing the names of the
outputs of thisterm and thevar i abl es property isastring containing the inputs of theterm. The
si gn isarea multiplier for the entire term; in spite of its name it can contain any real numberl.
For boundary terms, there are additional properties, all called bet ween, which have a string
value of the form “mat eri al 1/ mat eri al 2”. The boundary term is applied to the interfaces
betweenmat eri al 1 and mat eri al 2 (wherenmat er i al 2 can also be the name of a surface,
likeexposed or anode).

The el i m nati on property on the pde list is another list similar in structure to the pde list
itself. It hasan or der variablewhich definesthe temporary variablesto be created, corresponding
tothet npvar s keyword of thesyst emcommand. Then thereisan nt er mcorresponding to the
nf unc of the syst emcommand, and a series of terms defining the functions. The only novelty
here is that these functions have no geometry associated with them; the geot er mis always

dumy.

Finaly, apde list should have the following numerical properties. They are usually inherited by
aSeeAl so link, asin the above example.

def aul t _numerical _parameters = (list) {

nmaxNewt on = (int) 10; #max nunber of newton | oops
Newt onUpd = (real) 1le-5; #newt on convergence criterion
time.mn = (real) 1le-08; #m ni mum al | owed ti nmestep
time.extend = (real) 1.1; #maxi mum ti nestep stretch
time.init = (real) le-06; #istarting timestep

#expert paraneters

topNewton = (real) 0.01; #l oosest |inear tolerance
bot Newt on = (real) 1le-07; #tighest linear tol erance
Newt onChk = (real) O; #when to consider early exit
Newt onRhs = (real) O; #when to take early exit
Newt onMaxUpd = (real) 1le+09; #|l ar gest reasonabl e update

}s

To change the maximum number of Newton loops, the user could issue the command
dbase nodi fy name=library/ math/systens/ttt/math.ttt/pde/ maxNewt on ival =100
or even
dbase nodi fy nane=li brary/ mat h/ syst ens/ def aul t _numeri cal _par anet er s/ maxNewt on i val =100

which would change the parameter for all systems, not justttt .

At present the pde definition itself does not specify to what regions it should be applied. That
information is carried in the existence of a SeeAl so link

from |ibrary/ physics/material/field SeeAl so

to I'i brary/ mat h/ syst ens/ ABC

The solver queriestheexistenceof | | brary/ physi cs/ material /fi el d/ mat h. ABCand
if it findsit by following the link, the system is solved in that region. If not, the field is left alone
in that region. If no field has a system defined, it is not an error, but no work is done. Thisusually
happens when a system is defined but on the sol ve command the name of the system is omitted
or mis-spelled.

5. Existing modules

Having described how to assemble operators, the available operators are now specified.

5.1 Geometrical operators (“geoterms”).

fel _div Finite element discretization of the divergence operator
box_div Finite volume discretization of the divergence operator

vol unme (or nodal) Finite volume discretization of the nodal-weighting operator

i nterface Finite volume discretization for interface fluxes

dirichlet Enforce dirichlet boundary conditions

transi ent Nodal operator which can access historical values on the domain
constr ai nt Specifies constraints between variables at an interface

5.1.1 Divergence operator

The divergence operator isused in constructing such termsas @ F , wherethe flux F isdefined as
afunction of various solution variables a, b, c and their gradients.

F = F(a, b, c,0a, b, Oc)

The finite volume (“box”) discretization is much faster and is recommended. The current
implementation, both box and finite element, codes the negative of the divergence. This can be
adjusted with the sign parameter as desired. The negative sign is usually desired in order to
obtained the expected behavior in the diffusion equation.

0oC _
E—E oc =0

5.1.2 Nodal weighting operator

Terms such asthe clustering or pairing reactions must be weighted by the volume of anode so that
they can be appropriately added to a divergence operator. The weighting routine vol une doesthe
job.

5.1.3 Interface operator

Radiative or other surface fluxes must be weighted by an appropriate geometrical term, just asthe
bulk quantitiesare. Thei nt er f ace operator carries out this function.

5.1.4 Dirichlet operator

Thedi ri chl et operator marks its solution variables as being fixed at the interfaces to which it
isapplied. A co-routine (phyterm) specifies what those fixed values should be.

5.15 Transient operator

Transient termsrequire aspecial implementation of the nodal weighting operator which can access
historical values of itsinputs.

5.1.6 Constraint operator

PROPHET alows the specification of constraints on the values of a field on either side of an
interface. The most common case is where a quantity such as potential is desired to be continuous

10

across an interface. In heterostructure device simulation, it is common to have afixed ratio of the
concentration of carriers on one side to the concentration on the other. The constraint relation may
be more complex again, such asthe ratio between the two interface quantities being some function
of other variables. All such conditions are handled using the constraint operator.

5.2 Physical operators (“ flux routines’ or “phyterms’)

Associated with divergence operators

I apf | ux linear flux of n diffusing species DOC,,

equi | f1 ux flux of n diffusing species in the presence of electric field, with diffusivity depending
on potential D(y)(OC, € ,C,0¢) d

di f fusion generalized diffusivity AOB

drift drift operator HAOB - using central differences

updrift drift operator pACIB - using upwinding

coupl ef [ux coupled diffusion flux D(W)(X(OB « BOW) + BOX)

drift _diffusion | Scharfetter-Gummel discretization of the drift-diffusion operator

Associated with nodal operators

two2one the chemical reaction A + B <->C

cluster the chemical reactionC +1<->C

poi ssonf | ux nodal charge, which adds all signed active dopants and el ectron/hole charge.
elimcarrier calculate carriers based on potential

set _active calculate electrically active concentration of n chemical species
pot f | ux similar to poissonflux, but for use in device simulation

guasi Fer m similar to elim_carrier, but for use in device simulation

odef unc user function of n variables

pr od, add product,sum of N inputs

di vi de first input divided by second

copy, scale quantity divided by a scalar

sqroot, exp, sguare root, exponential, loarithm and arc-sinh of a quantity

| og, asinh

Associated with the interface operator

segregation Segregation of n species between two materials k(C,[matl] — C [mat2] /m)

radi ati on radiation from a boundary

odesur f user function of n variables

11

Associated with the dirichlet operator

defaul t_dirichlet

Defines dirichlet boundary conditions

device_dirichelt

Defines el ectron,hole and potential concentration as afunction of doping

Associated with the constraint operator

continuity

Enforces continuity across an interface

Transient operators

ddt

time derivative of afield

addt product of afield with time derivative of another field
psi rhodot form qu%%—'tD —%—E for transient electrothermal simulation

The physical operators take fields or their gradients as input and form fluxes by combining them
together in various ways. Some operators also use coefficients in the database, usually looked up
by name based on the working region and the name of the input or output fields. If no coefficient
is specified in the database or the user input file, the coefficient will default to zero except where
otherwise specified.

In the pre-packaged diffusion operators, there is a convention that the electrical concentration of
the species are distinguished from the chemical concentrations by the addition of an asterix to the
chemical name, for instance bor on and bor on* . Such operators could of course be built up as
combinations of the more primitive operators. The pre-packaged form gives convenient access to

afully formulated model.

521 lapflux
Inputs: [A/BC ...]
Outputs: [X Y, Z,...]
Coefficients diffusivity I'i brary/physics/material/A Dix
Function Computes the negative flux DOA for each of the inputs and stores it on the corresponding

output. The number of inputs and outputs must be the same, and usually the outputs are the

same as the inputs.The coefficient name is taken from the input field.

522 equilflux

Inputs: [Sb*, As*, B*, P*, psi]

Outputs: [Sb, As, B, P]

Coefficients neutral diffusivity I'i brary/physics/ material /dopant/Di x
positive diffusivity I'i brary/ physics/ material /dopant/Di p
negative diffusivity I'i brary/physics/ material/dopant/ D m
double negative diffusivity |i brary/ physi cs/ mat eri al / dopant/ Di mm

dopant sign I'i brary/physics/ material /dopant/dsign

Function

523

Inputs:

12

Computes the negative flux of N diffusing speciesin the presence of electric field, with diffu-
sivity depending on potential D (y)(0OC, %€ ,C,0W) . Theinputs are usualy the electrically
active dopant concentrations, followed by the potential.

diffusion, drift and updrift

Qutputs:

Coefficients

Function

524

Inputs:

coupleflux

Outputs:

Coefficients

Function

text

525

Inputs:

[A B

[X]

mobility |'ibrary/physics/material/A/driftco.B
(defaultsto 1.0)

Computes the generalized negative diffusion flux ACB and storesit on the ouput X. The dif-
fusion and drift operators are the same, the only difference being the output; when X=A the
result is drift, when X=B the result isdiffusion. Theupdri f t operator usestheless accurate
but more stable upwind differencing scheme.

[Xn, Al*, A2* Ant, psi]

[X, AL, A2, A]

fractional diffusivity I'i brary/physics/material/Al/fraction. X
diffusivity components I'i brary/physics/material/Al/{D x, mp, m}
dopant sign I'i brary/ physics/material/Al/dsign

Computes m coupled diffusion fluxes f«D(W)(X,(CA € AOY) + AOX,).

Theinput X, isthe normalized defect concentration. The remaining inputs are the mobile
dopant concentrations and potential. The diffusion flux is added to each of the dopant equa-
tions and to the defect equation.

drift_diffusion

Outputs:

Coefficients

Function

526

Inputs:

two2one

[psi, el ectrons or hol es]

[el ectrons orhol es]

carrier sign li brary/ physi cs/ material /el ectrons/esign
carrier diffusivity I'i brary/ physics/material/el ectrons/Dix
carrier mobility I'i brary/physics/material/electrons/nmobility

Computes one carrier flux assuming constant mobility and diffusivity, by the Scharfetter-
Gummel method.

[A B C

Outputs:

Coefficients

Function

5.27 cluster

Inputs:
Outputs:

Coefficients

Function

13

[A B, C
forward rate I'i brary/ physics/ material/d kf.twd2one. A B
reverse rate I'i brary/ physics/ material/C kr.two2one. A B

computesthe flux k; AB—-k,C and storesit with anegative sign onthe A and B
equations and a positive sign on the C equation

[C.]
[C.I]
forward rate I'i brary/ physics/material/C kf.cluster.|
reverse rate I'i brary/ physics/material/C kr.cluster.|

I'i brary/ physics/ material/C background

computestheflux k;Cl —k,(C —back) and storesit with apositive sign onthe C
eguation and a negative sign on the | equation. The value back is the back-
ground concentration of the variable and serves to avoid numerical

problems with driving C to 0.

52.8 poissonflux

Inputs:
Qutputs:

Coefficients

Function

[el ectrons, hol es, D1*, D2*, D3*]

[psi]
electron charge I'i brary/ physics/gcharg
dopant sign I'i brary/ physics/ material/D1l/dsign

computes the total charge at a node by adding carriers and dopants with appro-
priate signs. The inputs are the electrically active dopant concentrations. Used
in process simulation where the dopants are available separately.

529 dim_carrier

Inputs:
Outputs:

Coefficients

Function

5.2.10 set_active

Inputs:

[psi]

[el ectrons, hol es]

carrier sign I'i brary/physics/material/carrier/esign
intrinsic number I'i brary/physics/ material/ni

computes the equilibrium carrier concentrations at a node as afunction of the
electrostatic potential ¢ = n,exp(-&w) where the potential isnormalized and &
isthe carrier sign.

[Sb, As, B, P

Outputs:

Coefficients

Function

5211 potflux

Inputs:
Qutputs:
Coefficients

Function

14

[Sb*, As*, B*, P*]

i brary/physics/material/B/ Solubility
I'i brary/physics/material/B/m
I i brary/ physics/material /Bl beta

solubility
power law of solubility
coefficient for power law

computes the electrically active concentrations from the chemical concentra-
tions using either a hard solubility maximum or a soft saturation of the type
A+BA™ = C. If both models are present for an impurity, the soft model takes
precedence.

[el ectrons, hol es, net dope]

[psi]
electron charge I'i brary/ physics/qgcharg

computes the total charge at a node by adding carriers and net doping.

5212 quasiFermi

Inputs:
Outputs:

Coefficients

Function

5.2.13 odefunc

Inputs:
Outputs:
Coefficients

Function

5214 prod,sum

Inputs:

[psi]
[el ectrons, hol es]

I'i brary/ physics/material/ni-sze
i brary/physics/material/carrier/esign
I'i brary/physics/material/carrier/qgf.fixed

intrinsic number
carrier sign
fixed quasi-Fermi value

computes the carrier concentrations at a node assuming no transport. Thisis
used to eliminate whichever carrier is not being solved in asingle carrier or
zero carrier device problem. ¢ = nyexp(—¢ (W —¢)) where the quasi-Fermi level
@ istaken as zero if not specified. In the device modules, potential is not nor-
malized.

[cl,c2,c3,...]
[cl,c2,c3,...]
user-specified

thisisthe template function for writing new nodal operators. Any set of reac-
tions between any number of species can be inserted, and their coefficients
retrieved from the input file using standard subroutines.

[cl,c2,c3,...]

Outputs:
Coefficients

Function

5.2.15 divide

Inputs:
Qutputs:
Coefficients

Function

15

[X]

none

forms the product or sum of the specified inputs

[A B
[X]

none

X=A/B

5.2.16 copy, scale

Inputs:
Outputs:
Coefficients

Function

[Al
[X]
scale factor l'i brary/physics/material/A Cstar

The copy operator transfers A to X.
The scale operator divides A by the constant Cstar and storesin X

5.2.17 sgrt,exp,log,asinh

Inputs:
Outputs:
Coefficients

Function

[A]
[X]
none

The specified arithmetic function is performed on the field A and the results
stored in X

5.2.18 segregation

Inputs:
Outputs:

Coefficients:

Function

[ALA2A3,..]

[ALA2,A3,..]

segregation coefficient I'i brary/physics/ mat 1/ Al/ segr egat i on- coeff. nat 2
segregation rate I'i brary/ physi cs/ mat 1/ Al/ segregati on-rate. mat 2

I'i brary/ physi cs/silicon/boron/segregation-coeff.germani um3
means that the equilibrium germanium concentration is three times
that in silicon.

Computes the segregation flux h(C, —C,/m) between the concentrations of a
dopant on the two sides of an interface.

5.2.19 radiation

Inputs:
Outputs:

Coefficients:

Function

5.2.20 odesurf

Inputs:
Outputs:
Coefficients

Function

16

[AL, A2, A3, ...]
[AL, A2, A3, . ..]

radiation rate l'i brary/physics/ mat 1/ Al/ Kr ad
equilibrium concentration I'ibrary/ physics/ mat 1/ Al/ Cst ar
(defaultsto 0)

Computes an outward flux k(C—-C") for each of the inputs and adds to the cor-
responding output equation.

[cl,c2,c3,...]
[cl,c2,c3,...]
user-specified

thisis the template function for writing new surface operators. Any set of nor-
mal fluxes involving any number of species can be specified.

5.2.21 default_dirichlet

Inputs:
Qutputs:
Coefficients

Function

5.2.22 device dir

Inputs:
Outputs:
Coefficients

Function

5.2.23 continuity

Inputs:

Outputs:

none
[cl,c2,c3,...]
dirichlet value I'ibrary/physics/matl/ci/dirichlet.mt2

Provides the dirichlet value to be used for afield at a given interface.
Theregion “mat1” will always be areal region, but “mat2” may be a boundary
condition such as “exposed” or “cat hode”.

ichlet

netdope
[psi,electrons,holes)
dirichlet value I'i brary/physics/ material/ni-sze

Computes the charge-neutral values of electrons,holes and potential at ohmic
contacts as a function of doping.

cl
cl

17

Coefficients none

Function Forces continuity of c1 across the interfaces to which the operator is applied
5.2.24 ddt

Inputs: [A B, C

Outputs: [A B, C

Coefficients none

Function Computes the time derivative of the fields and adds them to the corresponding

equations

5.2.25 addt

Inputs: [A B]

Outputs: [X]

Coefficients none

Function Adds A%—'ts to equation X

5.2.26 psirhodot

Inputs: [psi, el ectrons, hol es]

Outputs: [T]

Coefficients electron charge I'i brary/ physics/gcharg
Function form wqgé—f—%?a for transient electrothermal simulation

6. Further examples

6.1 Using functions

This system solves

oD

2
92 - k2
P K4(D™)

syst em name=t est 3a
+ sysvar s=d

+ transi ent =d
+ t npvar s=d2

+ + 4+ + +

18

nt er nm=2

t er mO=box_di v. | apfl ux(d2|d) @silicon}
ternml=transient.ddt(d| d)@silicon}
nfunc=1

funcO=prod(d, d| d2) @silicon}

grid xloc=0,1

i mpl ant el enrd dose=1el4 range=0.5 si gma=0.05

dbase
dbase
dbase
dbase

dbase
dbase
sol ve

create nane=li brary/ physics/silicon/d/background rval =1el0
create nane=library/ physics/silicon/d/scale rval =1e10
createli st nane=library/physics/silicon/d2

create nanme=l i brary/ physics/silicon/d2/D x sval =" 1le-6/1el18”

create nane=options/tinestep ival=1
create nane=opti ons/ novi e sval =d
m n=30 tenper=1000 systenrtest 3a

Note that the diffusivity is stored under d2, because that is the input of the lapflux.

6.2 Using arbitrary fields

Any field can be used in afunction aslong as it has been defined. This system solves

oD _ 2DH]
a - <o

using afield of “unity” asinput to the divide operator.

system nanme=t est 3

+ 4+ + + + + + o+

dbase
dbase

dbase
dbase

dbase
dbase

sysvar s=d

t npvar s=dt np

transi ent =d

nt er me2

t er m0=box_di v. | apfl ux(dt np| d) @si | i con}
ternl=transient.ddt(d| d)@silicon}
nfunc=1

funcO=di vi de(unity, d| dtmp) @silicon}

create nane=li brary/ physics/silicon/d/ background rval =1el5
create nane=library/ physics/silicon/d/scale rval =1el5

createlist nane=library/physics/silicon/dtnp

create nane=library/ physics/silicon/dtnp/Di x sval =-1e30*1le-2

createlist nane=library/physics/silicon/unity

create nane=l i brary/ physics/silicon/unity/class sval =per nanent

grid xloc=0,1
impl ant el emrd dose=1el4 range=0.25 sigma=0.05

19

field set=unity val =1

dbase create nane=options/tinestep ival=1
dbase create nane=options/novi e sval =d

sol ve m n=30 tenper=1000 systemtest3

6.3 Using multipliersand dirichlet boundary conditions

This example solves

002D + 100D = 0
D(0) = 1
D(1) = 0

Since thisis asteady state problem, no timeis given.

system nanme=t est 4

+ sysvar s=d

+ nt er me3

+ t ermD=box_di v. | apfl ux(d|d) @silicon}

+ terml=dirichlet.default_dirichlet(0]d)@silicon/bulk,silicon/exposed}
+ t er m2=- 100*vol une. scal e(d| d) @si | i con}

dbase create nane=library/physics/silicon/d/background rval =0

dbase create nane=library/physics/silicon/d/scale rval=1

dbase create nane=library/physics/silicon/d/Dix rval =1

dbase create name=library/physics/silicon/d/dirichlet.exposed rval =1
dbase create name=library/physics/silicon/d/dirichlet.bulk rval=0
grid xloc=0,1

field set=d val =1

sol ve systenrtest4

graph el enrd | 0g=0 ym n=-10 ynmax=10

6.4 Diffusion with an arbitrary diffusivity in an arbitrary field

As an example with both drift and diffusion, consider

%—'f’ - @ (DOB+ BDOY)

The system can be written

system nanme=t est 6

sysvar s=bor on

t npvar s=bdco

nt er n¥3

t er nD=box_di v. di f f usi on(dco, boron| boron) @silicon}
terml=box_di v. drift(bdco, psi| boron) @silicon}

t er nR=t r ansi ent . ddt (bor on| boron) @si | i con}

nf unc=1

+ + + + + + +

20

+ f uncO=pr od(dco, boron| bdco) @si licon}

grid xloc=0,1 el enrboron conc=1el5
i mpl ant el emrbor on dose=1el4 ener gy=60

field set =ger mani um val =1e20*exp(- 0. 5*(X- 0. 2+abs(X-0. 2))/ 0. 05) +1e16
field set =psi val =-1 og(ger mani unf 5e19)

since we are evaluating dco outside the diffusion |oop
nmust set tenperature explicitly

dbase create name=options/dunmy sval =1

dbase print name=options/dumry tenper=1000

field set =dco val =" 4*8. 33e8/ 60*exp(-3. 43/ kT) *1e20/ (ger mani um+1el19)”

dbase create name=opti ons/ nmovi e sval =bor on
dbase create nanme=options/tinestep ival=1

sol ve m n=30 tenper=1000 systenrtest6
With the chosen sign of potential and drift term, the field opposes the boron diffusion. At the base
of the germanium profile, thefield goesto zero on the right but not the I eft, so that the driving force

actually scoops boron up from the flat part of its profile and drivesit uphill towards the germanium
peak.

7. Developing new models

Often more complicated model swill require reactions above and beyond the ssmplereactionslisted
above. Developing new modules to implement those reactions is intended to be easy. As an
example, thisisthe C code that implementsthet wo2one operator.

/*
* Basic chem cal reaction

*

*A+B->C

*

01:13§$faggﬁér éﬂgqg/ulS|/prophet/CVS/pIatforniPDE/FIuxes/tmoZone.c,v 2.3 1997/07/20
*/

#i ncl ude “prophetc. h”
#i nclude “grid.h”

#i ncl ude “assenblist.h”
#i ncl ude “pdeterns. h”
#i ncl ude “mat hpack. h”

* | npl ement
*A+B->C

*

21

* read argunents: [A B, C

* wite args: [XY, Z]
* normally X Y, Z=A B, C but not necessary
* coefficients: library/physics/material/C kf.tw2one.A. B forward coefficient
* coefficients: library/physics/material/C kr.tw2one.A. B reverse coefficient
K o o o e = - */

| * ARGSUSED* /

two2one(arglist)
argdescrip
{
real **sol _=0, **f_=0, ***df_=0;
real kf, kr, val;
int in;
int rhs = ((*intx)%d0 == 1);
int mx ((*imx)/10 == 1);

/* Sanity check */

if(*nsol '= 3 || *ndep != 3)

{
ndberr (“two2one: bad args\n”);
fl uxwhi ne(nsol, msol, ndep, ndep);
return(-1);

}
switch(*path)
{
case FT_CONFI G
for(in=20; in < *nsol * *ndep; in++) df[{in] = 1;
return(0);
case FT_RUN:
/*
* Get the forward and reverse coefficients
*/
kf = rscoeff3(“kf.two2one”, ndep[2], ndep[O0], ndep[l], *ireQ);
kr = rscoeff3(“kr.two2one”, ndep[2], ndep[0], ndep[l], *ireQ);
/*
* Convert the flat arrays into 2d arrays
*/
sol _ = array2(*nsol, *nn, sol);
f_ = array2(*nsol, *nn, f);
df _ = array3(*ndep, *nsol, *nn, df);
/*
* Figure the reaction and its derivative
*/
if(rhs)

for(in=0; in <*nn; in++) {
val = kr*sol _[2][in] - kf*sol _[O][in]*sol _[1][in];

22

f_[2][in] = val;
f_[O][in] = -val;
f_[1][in] = -val;
}
if(mx)
for(in =0; in < *nn; in++) {
df _[2][2][in] = kr;
df _[O0][2][in] = -kf*sol _[1][in];
df _[1]1[2][in] = -kf*sol _[O][in];
df _[2][1][in] = -df _[2][2][in];
df _[0][1][in] = -df_[O][2][in];
df _[1][1][in] = -df _[1][2][in];
df _[2][0][in] = -df_[2][2][in];
df _[0][O][in] = -df_[O][2][in];
df _[1][0][in] = -df _[1][2][in];
}
/*
* Uncovert arrays
*/
(void)array2free(*nsol, *nn, sol_);
(void)array2free(*nsol, *nn, f_);
(void)array3free(*ndep, *nsol, *nn, df_);
br eak;
/*
* ... lgnore all other calls.
*/
defaul t:
br eak;
}
return(0);

}

The critical lines come just below the comment “Figure the reaction and its derivative”’. The flux
isset up as

kr*sol [2][in] - kf*sol _[O][in]*sol _[1][in]
and stored with a positive sign in the pair equation and a negative sign in the phosphorus and
interstitial equations. The sign convention comes from writing the total system as an equation with
azero right hand side:

P
S+ (ke —kyP1) = 0

Right below that, the derivatives of the flux with respect to its inputs are calculated in the obvious
way. Therest of the subroutine is essentially set-up for these few lines.

23

Starting from the top, the set of include filesis basically standard. The comment at the start of the
routine should always list what the expected input and output fields of this operator are, so that
when someone else is assembling this operator into their property list they know what sequence to
list thefields. It isalso helpful to list the coefficients for your own or the next user’s reference.

The subroutine gets a standard list of argumentsar gl i st and their descriptions ar gdescri p.

int * path whether to compute the flux (FT_RUN) or do set-up or clean-up

int *imtx whether to compute the flux or its derivatives: 1=flux 10=derivative 11=both

int *ireg index of region

int *nn number of nodes to work on

int*dim space dimension of operator

int *nsol number of output variables

int *msol indices of each output variablesin the global list

int *ndep number of input variables

int *mdep indices of each input variable in the global list

real *coord coordinates of points - for models which have an explicit spatial dependence (ick)
real *sol theinput variables, ordered with node index fast and variable index slow (ndep,nn)
real *gradsol gradients of the inputs, for computing fluxes (nsol,dim,nn)

real *f the output fluxes (nsol,dim,nn)

real *df derivative of output fluxes with respect to inputs (ndep,nsol,dim,nn)

real *dgf derivative of output fluxes with respect to input gradients (ndep,nsol ,dim,dim,nn)

The argument list is set up so that the phyt er ns can be written in Fortran or C. For that reason,
all integers are passed in as pointers to integers and the arrays are “flat”, i.e. a single block of
storage for each array, rather than a set of pointers to pointers to storage.

The first thing the subroutine does is check it got called with the right number of species.

The next thing is to check whether it is being called in configuration mode (path FT_CONFIG).
The subroutine must return the coupling between its inputs and outputs. For this purpose the “df ”
array isoverloaded. It istreated asan nsol * ndep array, each entry of which defines whether the
output variable depends on the concentration(1) or gradient(2) of the input variable, or on both(3).
The output index varies fastest, and the default dependence is none (0). In this case, all the outputs
depend on all the inputs, so all values are set to 1.

Then it goesinto its main sequence. No special setup or cleanup is required for this subroutine, so
everything goes under the FT_RUN case. For peak performance, it is worthwhile precomputing
the coefficients only once per timestep (FT_DT) and storing them to be used at FT_RUN, instead
of recomputing them at every loop as done here. For just two coefficients the overhead is not very
significant. The subroutine rscoeff3 is a convenience routine which ssimply constructs the
necessary string, looks it up in the library, and evaluates it at temperature. Here it is used to
construct
i brary/physics/silicon/pipair/kf.tw2one. phosphorus.interstitial

24

Note how the order of variables was specified in order to get this result, rather than, say,
['i brary/ physics/silicon/phosphorus/kf.two2one. pipair.interstitial
The code is written in the most general way so that any three species can be passed in; a simpler
but less generic subroutine might be specific about the names and say instead
tcoeff(“silicon/intcluster/kf.rate.interstitial”)
Other helpful routinesin this context are

rscoeff2(nane, isl, is2, *ireg) - get library/physic¥materia/varl/name.var2
rscoeff(name, is, *ireg) - get library/physics/material/varl/name
rcoef f (name, *ireg) - get library/physics/material/name

t coef f (name) - get library/physicsname

Thesedl returnreal s.

The next three lines convert the flat arrays into their structured counterparts, to allow simple
indexing. This allows the later use of df_[2][2][in] rather than having to compute offsets into the
flat array.

The active lines, already discussed, follow. The order of derivatives is dightly counterintuitive;
one might expect of,/ds; at nodentobedf[i][j][n] butinfactitisstoredasdf[j][i][n].In

Fortran, the indices are moreintuitive: df (n,i,j).

Finally, after calculating the fluxes, the temporary pointer arrays are disposed and the subroutine
returns 0. If some problem was encountered, it should return -1.

Thistemplate should serve aswell for other, more complicated reactions. Thereisno limit on what
goesinto the C or Fortran subroutine carrying out this purpose, and modules containing thousands
of lines of code have been easily integrated.

When writing a new module such as this, acommon hazard is coding the derivatives incorrectly.

The flag “opt i ons/ t est . newm on” puts Prophet in a loop which repeatedly assembles the
function at the starting condition, changes one variable, reassembles the system, and checks that
the Jacobian correctly predicts the change. That is, it tests whether

[|e| = [R{x+&]-[R{g}]

O O mMm O O

Any non-zero values on the left or right side of the equation are printed out and can be inspected
for agreement.

