
Bell Laboratories
Lucent Technologies

subject: Solving Partial Differential Equations
with the PROPHET simulator

date: December 5, 1997

from: Conor S. Rafferty
MH 2D-303B
908 582 3575
conor@lucent.com

R. Kent Smith
MH 2D-303C
908 582 7522
kentsmith@lucent.com

Abstract

The PROPHET simulator is a framework to solve systems of partial differential equations (PDEs)
in time and 1,2 or 3 space dimensions. The simulator is designed with three main goals: efficiency,
geometric flexibility, equation extensibility. The first two distinguish it from canned packages such
as Mathematica, which do not allow the use of arbitrary shapes or grids and are not tuned to solve
systems with or unknowns. The third distinguishes it from previous application-specific
simulators such as PISCES or SUPREM-4. The simulator has been used in production for several
years to predict semiconductor manufacturing processes.

This memorandum focusses on the third goal, the ability to add new equations to the simulator. It
describes the language used to represent the equations, the available operators, the available
controls for influencing the solution process, and the procedure for adding new operators.

105 106

2

1. Introduction

The PROPHET simulator is a framework to solve systems of partial differential equations (PDEs) in
time and 1,2 or 3 space dimensions. (Ordinary differential equations can be solved as a degenerate
case). The PDEs are discretized using either finite elements or finite volume methods in space and
with implicit methods in time, reducing the differential equations to a large system of algebraic
equations. At each timestep the algebraic equations are solved by Newton’s method. The matrix
resulting from the linearization is solved by sparse iterative or direct methods.

The simulator is intended for use in production applications, and is therefore designed with
maximum efficiency as a goal. The matrix assembly code takes advantage of the vector hardware
capabilities on machines such as the Cray YMP, allowing the solution of 3D problems in
reasonable time. Two dimensional problems are routinely solved on a workstation. At Bell Labs,
PROPHET uses the Bell Labs Sparse Matrix Package (BLSMP) matrix solver for maximum
efficiency in the solution phase; release versions are interfaced to the SLES matrix solver from
Argonne which provides acceptable performance. Other solvers can easily be interfaced.

A second major concern is to solve problems on arbitrary geometries. To this end, the
discretization library makes no assumptions about the domain but uses arbitrary combinations of
elements to describe its shape, such as triangles and quadrilaterals in 2D, tetrahedra, bricks or
prisms in 3D. There are limited built-in grid generation facilities, but arbitrary grids can be read
from other sources and calculations performed on those domains.

The final major design goal is to allow new equations to be specified and solved by a user or a
model developer who may not be familiar with numerical methods. This memorandum focusses
on the third goal, the ability to add new equations and even new types of equations to the simulator.
This goal is particularly important for process simulation, where there is no consensus on the
underlying equations describing solid-state diffusion, and new models are frequently proposed. As
a very simple example of setting up equations, the system

can be described with the syntax

system name=test4
+ sysvars=y
+ nterm=3
+ term0=-1*box_div.lapflux(y|y)@{silicon}
+ term1=dirichlet.default_dirichlet(0|y)@{silicon/bulk,silicon/exposed}
+ term2=100.0e0*nodal.copy(y|y)@{silicon}

Typically there is one line of description for each term in the PDE, and one line for each boundary
condition. The overall system is described in terms of a number of building blocks, each of which
takes as input either primary variables or temporary variables which can be created on the fly as
functions of other variables. Standard building blocks include the Laplacian, the drift operator, the
nodal lumping operator, dirichlet and radiative boundary conditions, the time derivative, and so on.

Y∇ 2 100Y+ 0=

Y 0() 1=

Y 1() 1=

3

PROPHET is designed so that new building blocks can be easily constructed.

The intention is that the code can be used by three categories of users: application users, model
developers, and primary developers. Application users are primarily interested in running the code
off-the-shelf but are interested in having some control over its execution, such as the choice of
linear method. Model developers are interested in adding new equations, either by combining
existing operators or building new operators according to specification. The primary developers
are concerned with the underlying database, the implementation of the discretization library and
the linear solvers, the grid structure, and so on. A block diagram of the simulator is shown below.

In the subsequent sections, the decomposition of a PDE into its component parts is described, along
with its expression in terms of existing operators in the simulator. The existing operators are listed
and described. In the cases where new operators must be defined, the subroutine interface to such
operators is described.

2. Terminology and PDE Decomposition

The basic problem unit in PROPHET is the pdeblock or block of coupled partial differential
equations. The equations are to be solved on a domain which contains a number of fields.
Fields may either be fixed fields, if there are no equations to be solved for them, or variable fields,
abbreviated as variables.

A block of equations is square; it necessarily has the same number of variables and equations. A

Main Program Graphics Parser

Modules

Implant Etch etc.

Grid
Refinement

Matrix
Assembly

Matrix
Solution

Grid Representation / data structures (6k)

Database (2k)

Library

Diffuse

(1.1k)

(1.7k) (1.7k) (9k)
Deposit
(1.2k)

Application user

Model Developer

Primary developer

Figure 1. Overall structure of PROPHET. The simulator is built on two major blocks, a hierarchical
database and a PDE solving library. Extra modules to configure it as a process simulator are layered on top.
Numbers in parenthesis indicate lines of code.

(19k)

4

block can then be considered as an assembly of sub-terms, called pdeterms; for instance a
reaction-diffusion system might consist of several reaction terms between various species, a
diffusion term for each species, and a transient term for each species. A term-by-term
decomposition of point defect diffusion equations in silicon is given schematically in Figure 2. The
form of Figure 2 defines the sign convention in PROPHET; all terms in an equation are added to
create a residual which will be converged to zero by a Newton iteration.

The terms can be rectangular, not necessarily square, since they define a number n of outputs in
terms of m inputs. Each of these pdeterms can be further subdivided into a geometrical part and
a physical part (a geoterm and a phyterm). In the above instance, the laplacian operator can be
considered as the combination of the divergence operator and the flux of point defects .
The discretization defines the geometrical operators and the means of evaluating the gradients in
the flux; these would be handled differently in a finite element or finite volume implementation.
The construction of the flux from the gradients is, however, independent of the discretization and
is defined in terms of textbook constructs such as the concentration of a quantity at a point in space
and the gradient of a quantity in space, a scalar and a vector respectively. The numerical work of
discretizing the equations, and the modeling work of defining fluxes in terms of concentrations and
gradients are thus separated in PROPHET; the separation can be symbolically written as follows.

3. System definition using the system command

The “system” command defines a new set of equations to be solved. Each system must have a
name, which is later referenced by the “solve” command.

The system gives two lists of variables. The first is the system variables, “sysvars”, for which
differential equations are to be solved. The second list is called “tmpvars” and lists any
temporary variables used in formulating the full system.

The terms of the system are then listed. The number of terms is given first (“nterm”) followed by

CI∂
t∂

-------- DI CI∇()∇•– k CICV CI
*CV

*–()– 0=

CV∂
t∂

---------- DV CV∇()∇•– k CICV CI
*CV

*–()– 0=

Figure 2. A block of equations representing point defect diffusion in silicon (without impurities). The
block is decomposed into several terms: two laplacian terms, one binary-recombination term, and a
transient term.

∇• D C∇

PDEBLOCK G1P1 G2P2 G3P3+ +=

PDETERM1 PDETERM2 PDETERM3

5

each term (“term0,term1,...”), starting at zero. The format of the terms is as follows.

The outputs of the term must be the names of system variables. The input variables can be system
variables, temporary variables, or other fields which exist in the structure but which are not
currently being solved.

The same syntax is used to specify both bulk operators and boundary conditions, as exhibited in
the specification of the dirichlet boundary conditions in the example of the introduction.

If temporary variables are defined, then a similar list of functions is given, with “nfunction”
and “func0, func1,...” being the list of functions. The functions are defined with the same
syntax, without a geoterm. The output variables of a function must be temporary variables, while
the input variables can be system variables, temporary variables, or other fields which exist in the
structure which are not being solved. For example,

could be written

system name=ttt
+ sysvars=n
+ tmpvars=sn
+ nterm=2
+ term0=box_div.lapflux(sn|n)@{silicon}
+ term1=transient.ddt(n|n)@{silicon}
+ nfunc=1
+ func0=sqroot(n|sn)@{silicon}

The optional multiplier factor R multiplies the entire term. This is best used for setting the sign of
a term rather than providing coefficients to a PDE, since there is no way to specify that the
multiplier is different in one region or another.

When functions are given, usually each function generates one variable, though it is also possible
for a function to simultaneously generate several variables. If a function takes as input other
variables which are in turn functions of system variables, the order of function specification is
important. The “first-level” functions which are defined in terms of system variables should be
defined first, then the “second-level” functions, which are functions of only system variables and
“first-level” variables, should be given, and so on.

R*geoterm.phyterm(I1,I2,I3 | O1,O2,O3)@{region1,region2}

The geometric
operator of the
term

The physical
operator of the
term

Input
Fields

Output
Fields

Materials or interfaces
to which term applies

optional multiplier
factor

N∂
t∂

------- N∇ 2=

6

4. System definition via the PROPHET database

The system command is all that is necessary for building basic systems. This section describes a
little more of the internal workins in order to access more advanced system features such as
permanent systems, template systems and modifying numerical parameters. It can be skipped on
first reading.

Systems which are used frequently can be stored in the PROPHET database for access by other
users. In fact, the solver always uses a database description of a system; the system command
does its work by modifying the in-memory copy of the database.

The database has a tree starting at library/math/systems. For each named system, for instance ABC,
there is an entry library/math/systems/LABEL/math.ABC/pde. Normally the label
is the same as the system name. If no system is named on the solve command, but there is a
system .../math.default/pde, then that default system will be used in solving its variables.

For the system ttt described previously, the database entries would appear as follows. It contains
the same information in a more verbose format.

[library/math/systems/ttt/math.ttt/] pde = (list) {
SeeAlso = (string) “/library/math/systems/default_numerical_parameters”;
order = (string) “n”;
spawn = (string) “n,sn”;
nterm = (int) 2;
term0 = (list)
{

geoterm = (string) “box_div”;
phyterm = (string) “lapflux”;
equations = (string) “n”;
variables = (string) “sn”;
sign = (real) 1;

};
term1 = (list) {

geoterm = (string) “transient”;
phyterm = (string) “ddt”;
equations = (string) “n”;
variables = (string) “n”;
sign = (real) 1;
};

elimination = (list) {
order = (string) “sn”;
nterm = (int) 1;
term0 = (list) {

geoterm = (string) “dummy”;
phyterm = (string) “sqrt”;
equations = (string) “sn”;
variables = (string) “n”;
sign = (real) 1;

};
};

};

The property pde is a list with the properties spawn, order, nterm and termNNN and
optionally elimination.

The property order is a list of the system variables and corresponds to the sysvars keyword
on the system command. As its name implies, the order is significant. The order in which the

7

names appear dictates the order in which the variables which will appear in the matrix, which
influences the block fill structure of the matrix and may affect convergence if the matrix is solved
iteratively. Generally variables which are linked to many other variables should appear late in the
list, so that variables with few links can be eliminated early.

The property “spawn” is a list of field names which should be created on the domain when this
sytem is solved, if they are not already present. The system command by default includes all the
system variables and temporary variables on the spawn list, but it can be overriden by giving an
explicit spawn list, or by using a dbase command after the system command. There are cases
where the default behavior is not desired, related to setting up general systems which refer to many
variables, only a few of which are present in the current domain. For instance, if a system solves
for “boron,phosphorus,arsenic” but only “boron” is present in the domain, it would not
be desirable to generate phosphorus and arsenic. In that case the spawn list would be
empty. Another feature of the “spawn” variable is conditional creation. A variable may be marked
as being necessary if another variable exists. An example of this usage is when distinguishing
between active and chemical species. A variable for the active species should only be generated if
the chemical species is present. The syntax for that is

spawn=“psi,boron*:boron,arsenic*:arsenic,phosphorus*:phosphorus,antimony*:antimony”

Thus psi is always generated, but the active concentrations boron*,arsenic*, etc are created
only as necessary.

The relation between the variable lists on the system command and the variable lists in the PDE
property list is tabulated below.

The property nterm is an integer specifying the number of terms. The properties termNNN are
each lists, which should contain the properties geoterm, phyterm, equations, variables
and sign. The geoterm and phyterm properties are the names of the appropriate subroutines
which implement this term. The equations property is a string containing the names of the
outputs of this term and the variables property is a string containing the inputs of the term. The
sign is a real multiplier for the entire term; in spite of its name it can contain any real numberl.
For boundary terms, there are additional properties, all called between, which have a string
value of the form “material1/material2”. The boundary term is applied to the interfaces
between material1 and material2 (where material2 can also be the name of a surface,
like exposed or anode).

The elimination property on the pde list is another list similar in structure to the pde list
itself. It has an order variable which defines the temporary variables to be created, corresponding
to the tmpvars keyword of the system command. Then there is an nterm corresponding to the
nfunc of the system command, and a series of terms defining the functions. The only novelty
here is that these functions have no geometry associated with them; the geoterm is always

System command pde property list

sysvars order

tmpvars elimination/order

[spawn=sysvars+tmpvars] spawn

8

dummy.

Finally, a pde list should have the following numerical properties. They are usually inherited by
a SeeAlso link, as in the above example.

default_numerical_parameters = (list) {
maxNewton = (int) 10; #max number of newton loops
NewtonUpd = (real) 1e-5; #newton convergence criterion

time.min = (real) 1e-08; #minimum allowed timestep
time.extend = (real) 1.1; #maximum timestep stretch
time.init = (real) 1e-06; #starting timestep

#expert parameters
topNewton = (real) 0.01; #loosest linear tolerance
botNewton = (real) 1e-07; #tighest linear tolerance
NewtonChk = (real) 0; #when to consider early exit
NewtonRhs = (real) 0; #when to take early exit
NewtonMaxUpd = (real) 1e+09; #largest reasonable update
};

To change the maximum number of Newton loops, the user could issue the command

dbase modify name=library/math/systems/ttt/math.ttt/pde/maxNewton ival=100

or even

dbase modify name=library/math/systems/default_numerical_parameters/maxNewton ival=100

which would change the parameter for all systems, not just ttt.

At present the pde definition itself does not specify to what regions it should be applied. That
information is carried in the existence of a SeeAlso link
from library/physics/material/field/SeeAlso
to library/math/systems/ABC

The solver queries the existence of library/physics/material/field/math.ABC and
if it finds it by following the link, the system is solved in that region. If not, the field is left alone
in that region. If no field has a system defined, it is not an error, but no work is done. This usually
happens when a system is defined but on the solve command the name of the system is omitted
or mis-spelled.

5. Existing modules

Having described how to assemble operators, the available operators are now specified.

9

5.1 Geometrical operators (“geoterms”).

5.1.1 Divergence operator

The divergence operator is used in constructing such terms as , where the flux is defined as
a function of various solution variables and their gradients.

The finite volume (“box”) discretization is much faster and is recommended. The current
implementation, both box and finite element, codes the negative of the divergence. This can be
adjusted with the sign parameter as desired. The negative sign is usually desired in order to
obtained the expected behavior in the diffusion equation.

5.1.2 Nodal weighting operator

Terms such as the clustering or pairing reactions must be weighted by the volume of a node so that
they can be appropriately added to a divergence operator. The weighting routine volume does the
job.

5.1.3 Interface operator

Radiative or other surface fluxes must be weighted by an appropriate geometrical term, just as the
bulk quantities are. The interface operator carries out this function.

5.1.4 Dirichlet operator

The dirichlet operator marks its solution variables as being fixed at the interfaces to which it
is applied. A co-routine (phyterm) specifies what those fixed values should be.

5.1.5 Transient operator

Transient terms require a special implementation of the nodal weighting operator which can access
historical values of its inputs.

5.1.6 Constraint operator

PROPHET allows the specification of constraints on the values of a field on either side of an
interface. The most common case is where a quantity such as potential is desired to be continuous

fel_div Finite element discretization of the divergence operator

box_div Finite volume discretization of the divergence operator

volume (or nodal) Finite volume discretization of the nodal-weighting operator

interface Finite volume discretization for interface fluxes

dirichlet Enforce dirichlet boundary conditions

transient Nodal operator which can access historical values on the domain

constraint Specifies constraints between variables at an interface

F∇• F

F F a b c a∇ b∇ c∇, , , , ,()=

a b c, ,

C∂
t∂

------- C∇∇•– 0=

10

across an interface. In heterostructure device simulation, it is common to have a fixed ratio of the
concentration of carriers on one side to the concentration on the other. The constraint relation may
be more complex again, such as the ratio between the two interface quantities being some function
of other variables. All such conditions are handled using the constraint operator.

5.2 Physical operators (“flux routines” or “phyterms”)

Associated with divergence operators

lapflux linear flux of n diffusing species

equilflux flux of n diffusing species in the presence of electric field, with diffusivity depending
on potential d

diffusion generalized diffusivity

drift drift operator - using central differences

updrift drift operator - using upwinding

coupleflux coupled diffusion flux

drift_diffusion Scharfetter-Gummel discretization of the drift-diffusion operator

Associated with nodal operators

two2one the chemical reaction A + B <-> C

cluster the chemical reaction C + I <-> C

poissonflux nodal charge, which adds all signed active dopants and electron/hole charge.

elim_carrier calculate carriers based on potential

set_active calculate electrically active concentration of n chemical species

potflux similar to poissonflux, but for use in device simulation

quasiFermi similar to elim_carrier, but for use in device simulation

odefunc user function of n variables

prod,add product,sum of N inputs

divide first input divided by second

copy, scale quantity divided by a scalar

sqroot, exp,
log, asinh

square root, exponential, loarithm and arc-sinh of a quantity

Associated with the interface operator

segregation Segregation of n species between two materials

radiation radiation from a boundary

odesurf user function of n variables

D Cn∇

D ψ() Cn∇ ξ nCn ψ∇+()

A B∇

µA B∇

µA B∇

D ψ() X B∇ ξ B ψ∇+() B X∇+()

k Cn mat1[] Cn mat2[] m⁄–()

11

The physical operators take fields or their gradients as input and form fluxes by combining them
together in various ways. Some operators also use coefficients in the database, usually looked up
by name based on the working region and the name of the input or output fields. If no coefficient
is specified in the database or the user input file, the coefficient will default to zero except where
otherwise specified.

In the pre-packaged diffusion operators, there is a convention that the electrical concentration of
the species are distinguished from the chemical concentrations by the addition of an asterix to the
chemical name, for instance boron and boron*. Such operators could of course be built up as
combinations of the more primitive operators. The pre-packaged form gives convenient access to
a fully formulated model.

5.2.1 lapflux

5.2.2 equilflux

Associated with the dirichlet operator

default_dirichlet Defines dirichlet boundary conditions

device_dirichelt Defines electron,hole and potential concentration as a function of doping

Associated with the constraint operator

continuity Enforces continuity across an interface

Transient operators

ddt time derivative of a field

addt product of a field with time derivative of another field

psirhodot form for transient electrothermal simulation

Inputs: [A,B,C,...]

Outputs: [X,Y,Z,...]

Coefficients diffusivity library/physics/material/A/Dix

Function Computes the negative flux for each of the inputs and stores it on the corresponding
output. The number of inputs and outputs must be the same, and usually the outputs are the
same as the inputs.The coefficient name is taken from the input field.

Inputs: [Sb*,As*,B*,P*,psi]

Outputs: [Sb,As,B,P]

Coefficients neutral diffusivity
positive diffusivity
negative diffusivity
double negative diffusivity
dopant sign

library/physics/material/dopant/Dix
library/physics/material/dopant/Dip
library/physics/material/dopant/Dim
library/physics/material/dopant/Dimm
library/physics/material/dopant/dsign

ψq
p∂
t∂

------ n∂
t∂

-----– 
 

D A∇

12

5.2.3 diffusion, drift and updrift

5.2.4 coupleflux

text

5.2.5 drift_diffusion

5.2.6 two2one

Function Computes the negative flux of N diffusing species in the presence of electric field, with diffu-
sivity depending on potential . The inputs are usually the electrically
active dopant concentrations, followed by the potential.

Inputs: [A,B]

Outputs: [X]

Coefficients mobility library/physics/material/A/driftco.B
(defaults to 1.0)

Function Computes the generalized negative diffusion flux and stores it on the ouput X. The dif-
fusion and drift operators are the same, the only difference being the output; when X=A the
result is drift, when X=B the result is diffusion. The updrift operator uses the less accurate
but more stable upwind differencing scheme.

Inputs: [Xn,A1*,A2*,Am*,psi]

Outputs: [X,A1,A2,Am]

Coefficients fractional diffusivity
diffusivity components
dopant sign

library/physics/material/A1/fraction.X
library/physics/material/A1/{Dix,m,p,mm}
library/physics/material/A1/dsign

Function Computes m coupled diffusion fluxes .
The input is the normalized defect concentration. The remaining inputs are the mobile
dopant concentrations and potential. The diffusion flux is added to each of the dopant equa-
tions and to the defect equation.

Inputs: [psi,electrons or holes]

Outputs: [electrons or holes]

Coefficients carrier sign
carrier diffusivity
carrier mobility

library/physics/material/electrons/esign
library/physics/material/electrons/Dix
library/physics/material/electrons/mobility

Function Computes one carrier flux assuming constant mobility and diffusivity, by the Scharfetter-
Gummel method.

Inputs: [A,B,C]

D ψ() Cn∇ ξ nCn ψ∇+()

A B∇

f XD ψ() Xn A∇ ξ A ψ∇+() A Xn∇+()
Xn

13

5.2.7 cluster

5.2.8 poissonflux

5.2.9 elim_carrier

5.2.10 set_active

Outputs: [A,B,C]

Coefficients forward rate
reverse rate

library/physics/material/C/kf.two2one.A.B
library/physics/material/C/kr.two2one.A.B

Function computes the flux and stores it with a negative sign on the A and B
equations and a positive sign on the C equation

Inputs: [C,I]

Outputs: [C,I]

Coefficients forward rate
reverse rate

library/physics/material/C/kf.cluster.I
library/physics/material/C/kr.cluster.I
library/physics/material/C/background

Function computes the flux and stores it with a positive sign on the C
equation and a negative sign on the I equation. The value back is the back-
ground concentration of the variable and serves to avoid numerical
problems with driving C to 0.

Inputs: [electrons,holes,D1*,D2*,D3*]

Outputs: [psi]

Coefficients electron charge
dopant sign

library/physics/qcharg
library/physics/material/D1/dsign

Function computes the total charge at a node by adding carriers and dopants with appro-
priate signs. The inputs are the electrically active dopant concentrations. Used
in process simulation where the dopants are available separately.

Inputs: [psi]

Outputs: [electrons,holes]

Coefficients carrier sign
intrinsic number

library/physics/material/carrier/esign
library/physics/material/ni

Function computes the equilibrium carrier concentrations at a node as a function of the
electrostatic potential where the potential is normalized and
is the carrier sign.

Inputs: [Sb,As,B,P]

k f AB krC–

k f CI kr C back–()–

c ni ξψ–()exp= ξ

14

5.2.11 potflux

5.2.12 quasiFermi

5.2.13 odefunc

5.2.14 prod,sum

Outputs: [Sb*,As*,B*,P*]

Coefficients solubility
power law of solubility
coefficient for power law

library/physics/material/B/Solubility
library/physics/material/B/m
library/physics/material/B/beta

Function computes the electrically active concentrations from the chemical concentra-
tions using either a hard solubility maximum or a soft saturation of the type

. If both models are present for an impurity, the soft model takes
precedence.

Inputs: [electrons,holes,netdope]

Outputs: [psi]

Coefficients electron charge library/physics/qcharg

Function computes the total charge at a node by adding carriers and net doping.

Inputs: [psi]

Outputs: [electrons,holes]

Coefficients intrinsic number
carrier sign
fixed quasi-Fermi value

library/physics/material/ni-sze
library/physics/material/carrier/esign
library/physics/material/carrier/qf.fixed

Function computes the carrier concentrations at a node assuming no transport. This is
used to eliminate whichever carrier is not being solved in a single carrier or
zero carrier device problem. where the quasi-Fermi level

 is taken as zero if not specified. In the device modules, potential is not nor-
malized.

Inputs: [c1,c2,c3,...]

Outputs: [c1,c2,c3,...]

Coefficients user-specified

Function this is the template function for writing new nodal operators. Any set of reac-
tions between any number of species can be inserted, and their coefficients
retrieved from the input file using standard subroutines.

Inputs: [c1,c2,c3,...]

A βAm+ C=

c ni ξ ψ φ–()–()exp=

φ

15

5.2.15 divide

5.2.16 copy, scale

5.2.17 sqrt,exp,log,asinh

5.2.18 segregation

Outputs: [X]

Coefficients none

Function forms the product or sum of the specified inputs

Inputs: [A,B]

Outputs: [X]

Coefficients none

Function X=A/B

Inputs: [A]

Outputs: [X]

Coefficients scale factor library/physics/material/A/Cstar

Function The copy operator transfers A to X.
The scale operator divides A by the constant Cstar and stores in X

Inputs: [A]

Outputs: [X]

Coefficients none

Function The specified arithmetic function is performed on the field A and the results
stored in X

Inputs: [A1,A2,A3,...]

Outputs: [A1,A2,A3,...]

Coefficients: segregation coefficient
segregation rate

library/physics/mat1/A1/segregation-coeff.mat2
library/physics/mat1/A1/segregation-rate.mat2

library/physics/silicon/boron/segregation-coeff.germanium=3

means that the equilibrium germanium concentration is three times
that in silicon.

Function Computes the segregation flux between the concentrations of a
dopant on the two sides of an interface.

h C1 C2 m⁄–()

16

5.2.19 radiation

5.2.20 odesurf

5.2.21 default_dirichlet

5.2.22 device_dirichlet

5.2.23 continuity

Inputs: [A1,A2,A3,...]

Outputs: [A1,A2,A3,...]

Coefficients: radiation rate
equilibrium concentration
(defaults to 0)

library/physics/mat1/A1/Krad
library/physics/mat1/A1/Cstar

Function Computes an outward flux for each of the inputs and adds to the cor-
responding output equation.

Inputs: [c1,c2,c3,...]

Outputs: [c1,c2,c3,...]

Coefficients user-specified

Function this is the template function for writing new surface operators. Any set of nor-
mal fluxes involving any number of species can be specified.

Inputs: none

Outputs: [c1,c2,c3,...]

Coefficients dirichlet value library/physics/mat1/ci/dirichlet.mat2

Function Provides the dirichlet value to be used for a field at a given interface.
The region “mat1” will always be a real region, but “mat2” may be a boundary
condition such as “exposed” or “cathode”.

Inputs: netdope

Outputs: [psi,electrons,holes]

Coefficients dirichlet value library/physics/material/ni-sze

Function Computes the charge-neutral values of electrons,holes and potential at ohmic
contacts as a function of doping.

Inputs: c1

Outputs: c1

k C C*–()

17

5.2.24 ddt

5.2.25 addt

5.2.26 psirhodot

6. Further examples

6.1 Using functions

This system solves

system name=test3a
+ sysvars=d
+ transient=d
+ tmpvars=d2

Coefficients none

Function Forces continuity of c1 across the interfaces to which the operator is applied

Inputs: [A,B,C]

Outputs: [A,B,C]

Coefficients none

Function Computes the time derivative of the fields and adds them to the corresponding
equations

Inputs: [A,B]

Outputs: [X]

Coefficients none

Function Adds to equation X

Inputs: [psi,electrons,holes]

Outputs: [T]

Coefficients electron charge library/physics/qcharg

Function form for transient electrothermal simulation

A
B∂
t∂

ψq
p∂
t∂

------ n∂
t∂

-----– 
 

D∂
t∂

------- κ D
2()∇ 2=

18

+ nterm=2
+ term0=box_div.lapflux(d2|d)@{silicon}
+ term1=transient.ddt(d|d)@{silicon}
+ nfunc=1
+ func0=prod(d,d|d2)@{silicon}

grid xloc=0,1

implant elem=d dose=1e14 range=0.5 sigma=0.05
dbase create name=library/physics/silicon/d/background rval=1e10
dbase create name=library/physics/silicon/d/scale rval=1e10
dbase createlist name=library/physics/silicon/d2
dbase create name=library/physics/silicon/d2/Dix sval=”1e-6/1e18”

dbase create name=options/timestep ival=1
dbase create name=options/movie sval=d
solve min=30 temper=1000 system=test3a

Note that the diffusivity is stored under d2, because that is the input of the lapflux.

6.2 Using arbitrary fields

Any field can be used in a function as long as it has been defined. This system solves

using a field of “unity” as input to the divide operator.

system name=test3
+ sysvars=d
+ tmpvars=dtmp
+ transient=d
+ nterm=2
+ term0=box_div.lapflux(dtmp|d)@{silicon}
+ term1=transient.ddt(d|d)@{silicon}
+ nfunc=1
+ func0=divide(unity,d|dtmp)@{silicon}

dbase create name=library/physics/silicon/d/background rval=1e15
dbase create name=library/physics/silicon/d/scale rval=1e15

dbase createlist name=library/physics/silicon/dtmp
dbase create name=library/physics/silicon/dtmp/Dix sval=-1e30*1e-2

dbase createlist name=library/physics/silicon/unity
dbase create name=library/physics/silicon/unity/class sval=permanent

grid xloc=0,1
implant elem=d dose=1e14 range=0.25 sigma=0.05

D∂
t∂

------- κ 1
D
---- 

 ∇ 2=

19

field set=unity val=1

dbase create name=options/timestep ival=1
dbase create name=options/movie sval=d
solve min=30 temper=1000 system=test3

6.3 Using multipliers and dirichlet boundary conditions

This example solves

Since this is a steady state problem, no time is given.

system name=test4
+ sysvars=d
+ nterm=3
+ term0=box_div.lapflux(d|d)@{silicon}
+ term1=dirichlet.default_dirichlet(0|d)@{silicon/bulk,silicon/exposed}
+ term2=-100*volume.scale(d|d)@{silicon}

dbase create name=library/physics/silicon/d/background rval=0
dbase create name=library/physics/silicon/d/scale rval=1
dbase create name=library/physics/silicon/d/Dix rval=1
dbase create name=library/physics/silicon/d/dirichlet.exposed rval=1
dbase create name=library/physics/silicon/d/dirichlet.bulk rval=0

grid xloc=0,1

field set=d val=1

solve system=test4

graph elem=d log=0 ymin=-10 ymax=10

6.4 Diffusion with an arbitrary diffusivity in an arbitrary field

As an example with both drift and diffusion, consider

The system can be written

system name=test6
+ sysvars=boron
+ tmpvars=bdco
+ nterm=3
+ term0=box_div.diffusion(dco,boron|boron)@{silicon}
+ term1=box_div.drift(bdco,psi|boron)@{silicon}
+ term2=transient.ddt(boron|boron)@{silicon}
+ nfunc=1

D∇ 2 100D+ 0=

D 0() 1=

D 1() 0=

B∂
t∂

------ D B∇ BD ψ∇+()∇•=

20

+ func0=prod(dco,boron|bdco)@{silicon}

grid xloc=0,1 elem=boron conc=1e15

implant elem=boron dose=1e14 energy=60

field set=germanium val=1e20*exp(-0.5*(X-0.2+abs(X-0.2))/0.05)+1e16
field set=psi val=-log(germanium/5e19)

since we are evaluating dco outside the diffusion loop,
must set temperature explicitly
dbase create name=options/dummy sval=1
dbase print name=options/dummy temper=1000

field set=dco val=”4*8.33e8/60*exp(-3.43/kT)*1e20/(germanium+1e19)”

dbase create name=options/movie sval=boron
dbase create name=options/timestep ival=1

solve min=30 temper=1000 system=test6

With the chosen sign of potential and drift term, the field opposes the boron diffusion. At the base
of the germanium profile, the field goes to zero on the right but not the left, so that the driving force
actually scoops boron up from the flat part of its profile and drives it uphill towards the germanium
peak.

7. Developing new models

Often more complicated models will require reactions above and beyond the simple reactions listed
above. Developing new modules to implement those reactions is intended to be easy. As an
example, this is the C code that implements the two2one operator.

/*

 * Basic chemical reaction

 *

 * A + B -> C

 *

 * $Header: /home/ulsi/prophet/CVS/platform/PDE/Fluxes/two2one.c,v 2.3 1997/07/20
01:13:22 conor Exp $

 */

#include “prophetc.h”

#include “grid.h”

#include “assemblist.h”

#include “pdeterms.h”

#include “mathpack.h”

/*-----------------t w o 2 o n e--

 * Implement

 * A + B -> C

 *

21

 * read arguments: [A,B,C]

 * write args: [X,Y,Z]

 * normally X,Y,Z=A,B,C but not necessary

 * coefficients: library/physics/material/C/kf.two2one.A.B forward coefficient

 * coefficients: library/physics/material/C/kr.two2one.A.B reverse coefficient

 --/

/*ARGSUSED*/

two2one(arglist)

 argdescrip

{

 real **sol_=0, **f_=0, ***df_=0;

 real kf, kr, val;

 int in;

 int rhs = ((*imtx)%10 == 1);

 int mtx = ((*imtx)/10 == 1);

 /* Sanity check */

 if(*nsol != 3 || *ndep != 3)

 {

 ndberr(“two2one: bad args\n”);

 fluxwhine(nsol, msol, ndep, mdep);

 return(-1);

 }

 switch(*path)

 {

 case FT_CONFIG:

 for(in = 0; in < *nsol * *ndep; in++) df[in] = 1;

 return(0);

 case FT_RUN:

 /*

 * Get the forward and reverse coefficients

 */

 kf = rscoeff3(“kf.two2one”, mdep[2], mdep[0], mdep[1], *ireg);

 kr = rscoeff3(“kr.two2one”, mdep[2], mdep[0], mdep[1], *ireg);

 /*

 * Convert the flat arrays into 2d arrays

 */

 sol_ = array2(*nsol, *nn, sol);

 f_ = array2(*nsol, *nn, f);

 df_ = array3(*ndep, *nsol, *nn, df);

 /*

 * Figure the reaction and its derivative

 */

 if(rhs)

 for(in = 0; in < *nn; in++) {

 val = kr*sol_[2][in] - kf*sol_[0][in]*sol_[1][in];

22

 f_[2][in] = val;

 f_[0][in] = -val;

 f_[1][in] = -val;

 }

 if(mtx)

 for(in = 0; in < *nn; in++) {

 df_[2][2][in] = kr;

 df_[0][2][in] = -kf*sol_[1][in];

 df_[1][2][in] = -kf*sol_[0][in];

 df_[2][1][in] = -df_[2][2][in];

 df_[0][1][in] = -df_[0][2][in];

 df_[1][1][in] = -df_[1][2][in];

 df_[2][0][in] = -df_[2][2][in];

 df_[0][0][in] = -df_[0][2][in];

 df_[1][0][in] = -df_[1][2][in];

 }

 /*

 * Uncovert arrays

 */

 (void)array2free(*nsol, *nn, sol_);

 (void)array2free(*nsol, *nn, f_);

 (void)array3free(*ndep, *nsol, *nn, df_);

 break;

 /*

 * ... Ignore all other calls.

 */

 default:

 break;

 }

 return(0);

}

The critical lines come just below the comment “Figure the reaction and its derivative”. The flux
is set up as

kr*sol_[2][in] - kf*sol_[0][in]*sol_[1][in]

and stored with a positive sign in the pair equation and a negative sign in the phosphorus and
interstitial equations. The sign convention comes from writing the total system as an equation with
a zero right hand side:

Right below that, the derivatives of the flux with respect to its inputs are calculated in the obvious
way. The rest of the subroutine is essentially set-up for these few lines.

P∂
t∂

------ k prΠ k pf PI–()+ 0=

23

Starting from the top, the set of include files is basically standard. The comment at the start of the
routine should always list what the expected input and output fields of this operator are, so that
when someone else is assembling this operator into their property list they know what sequence to
list the fields. It is also helpful to list the coefficients for your own or the next user’s reference.

The subroutine gets a standard list of arguments arglist and their descriptions argdescrip.

The argument list is set up so that the phyterms can be written in Fortran or C. For that reason,
all integers are passed in as pointers to integers and the arrays are “flat”, i.e. a single block of
storage for each array, rather than a set of pointers to pointers to storage.

The first thing the subroutine does is check it got called with the right number of species.

The next thing is to check whether it is being called in configuration mode (path FT_CONFIG).
The subroutine must return the coupling between its inputs and outputs. For this purpose the “df”
array is overloaded. It is treated as an nsol*ndep array, each entry of which defines whether the
output variable depends on the concentration(1) or gradient(2) of the input variable, or on both(3).
The output index varies fastest, and the default dependence is none (0). In this case, all the outputs
depend on all the inputs, so all values are set to 1.

Then it goes into its main sequence. No special setup or cleanup is required for this subroutine, so
everything goes under the FT_RUN case. For peak performance, it is worthwhile precomputing
the coefficients only once per timestep (FT_DT) and storing them to be used at FT_RUN, instead
of recomputing them at every loop as done here. For just two coefficients the overhead is not very
significant. The subroutine rscoeff3 is a convenience routine which simply constructs the
necessary string, looks it up in the library, and evaluates it at temperature. Here it is used to
construct

library/physics/silicon/pipair/kf.two2one.phosphorus.interstitial

int *path whether to compute the flux (FT_RUN) or do set-up or clean-up

int *imtx whether to compute the flux or its derivatives: 1=flux 10=derivative 11=both

int *ireg index of region

int *nn number of nodes to work on

int *dim space dimension of operator

int *nsol number of output variables

int *msol indices of each output variables in the global list

int *ndep number of input variables

int *mdep indices of each input variable in the global list

real *coord coordinates of points - for models which have an explicit spatial dependence (ick)

real *sol the input variables, ordered with node index fast and variable index slow (ndep,nn)

real *gradsol gradients of the inputs, for computing fluxes (nsol,dim,nn)

real *f the output fluxes (nsol,dim,nn)

real *df derivative of output fluxes with respect to inputs (ndep,nsol,dim,nn)

real *dgf derivative of output fluxes with respect to input gradients (ndep,nsol,dim,dim,nn)

24

Note how the order of variables was specified in order to get this result, rather than, say,
library/physics/silicon/phosphorus/kf.two2one.pipair.interstitial

The code is written in the most general way so that any three species can be passed in; a simpler
but less generic subroutine might be specific about the names and say instead

tcoeff(“silicon/intcluster/kf.rate.interstitial”)

Other helpful routines in this context are
rscoeff2(name, is1, is2, *ireg) - get library/physics/material/var1/name.var2
rscoeff(name, is, *ireg) - get library/physics/material/var1/name
rcoeff(name, *ireg) - get library/physics/material/name
tcoeff(name) - get library/physics/name

These all return reals.

The next three lines convert the flat arrays into their structured counterparts, to allow simple
indexing. This allows the later use of df_[2][2][in] rather than having to compute offsets into the
flat array.

The active lines, already discussed, follow. The order of derivatives is slightly counterintuitive;
one might expect at node n to be df[i][j][n] but in fact it is stored as df[j][i][n]. In
Fortran, the indices are more intuitive: df(n,i,j).

Finally, after calculating the fluxes, the temporary pointer arrays are disposed and the subroutine
returns 0. If some problem was encountered, it should return -1.

This template should serve as well for other, more complicated reactions. There is no limit on what
goes into the C or Fortran subroutine carrying out this purpose, and modules containing thousands
of lines of code have been easily integrated.

When writing a new module such as this, a common hazard is coding the derivatives incorrectly.
The flag “options/test.newton” puts Prophet in a loop which repeatedly assembles the
function at the starting condition, changes one variable, reassembles the system, and checks that
the Jacobian correctly predicts the change. That is, it tests whether

Any non-zero values on the left or right side of the equation are printed out and can be inspected
for agreement.

f i∂ s j∂⁄

J[]

0

0

ε
0

0

R x ε+{ }[] R ε{ }[]–=

