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Liquid  water                          
(~3x1022 molecules/cm3) 

Vapor (~2x1019 molecules/cm3)  

The asymmetry in number density at a liquid-
vapor surface gives rise to a pressure 
differential and a surface curvature 

Liquid 

Vapor Surface  
(~1015 molecules/cm2) 

Solid  substrate (~6x1022 atoms/cm3) 
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The “Curvature” of a Liquid’s Surface 
has far reaching consequences 

See Appendix for a general discussion on how to quantify the curvature 
of a surface using the radius of curvature. Two important consequences: 

1. If the surface of a liquid is curved, there must be a pressure 
difference: Young-Laplace Equation 

a) Fill tube with liquid: 

Liquid Liquid Liquid 

b) Liquid/vapor interface in equilibrium 
Curvature implies Pin < Pout Curvature implies Pin > Pout 
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Implications of the Young‐Laplace Equation 

• If the shape of a liquid surface is known, its curvature is known and the 
pressure difference can be calculated. 
 
• In equilibrium, the pressure is the same everywhere in a liquid (otherwise 
there would be a flow of liquid to regions of lower pressure). Thus, Pin is 
constant and the Young‐Laplace equation tells us that the surface of the 
liquid must have the same curvature everywhere. 
 
Example:  Calculate the pressure difference that develops for a spherical drop of 
water at STP with a radius of 1 μm? 
 
 
 
 
 
 
 
• Using the Young‐Laplace equation, the equilibrium shape of a liquid 
surface can be calculated if we know the pressure difference and    
boundary conditions (volume of liquid and its contact line).  
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2. It may not be so obvious, . . .  but if the surface of a liquid is 
curved,  the equilibrium vapor pressure of the liquid must also 
change: Kelvin Equation 

The equilibrium vapor pressure measures a liquid's evaporation 
rate: smaller drops evaporate faster 

Liquid film 

Flat interface: 
drop bubbles condensation 

into pores 

Curved interfaces: 

gas
f
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Rtip 

R1 R2 

Sign convention for radius: R1 is negative, R2 is positive 

Application to AFM 

Rtip 

In humid air, both tip and substrate will be coated with thin layer of 
adsorbed water.  When the tip contacts the surface, the adsorbed 

water will form a meniscus neck around the AFM tip. 
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h  

System in equilibrium 

Temperature T 

Pressure P 
water 

meniscus 
neck  



How thick is h? 
(measured thickness of water layer on a silicon oxide substrate) 

Asay and Kim, J. Phys. Chem B 109, 16760 (2005) 

How long does it take for this layer of water to form? The answer 
depends on relative humidity, but for a typical ambient humidity of say 
30%, the time is very fast, much less than one second – see Appendix 3. 
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~0.8 nm at 
RH=30% 



• Vapor pressure in handbooks are measured for liquids having a flat surface 
• Vapor pressure depends on the curvature of the liquid’s surface 
• Use Kelvin equation - derived from the Young-Laplace Equation: 
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for water: 

At contact - what determines R1, R2? 
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1 2

1 1Assuming
R R

>>

Results for water meniscus 

Will the liquid evaporate from the meniscus neck? No, the 
liquid will not evaporate due to the curvature of the 

air/vapor interface. 
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Rtip

R1R2

System in equilibrium

~0.5 nm at 
RH=30% 



Conclusion: A capillary meniscus force 
binds a sphere to a flat plane 
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Rtip 

lift offF −

Rcap 

Water meniscus forms: 
R1 is small (and negative) 
R2 is large (and positive) 
Curvature implies Pin < Pout 
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DATA:  
Asay and Kim, J. Phys. Chem B 109, 16760 (2005) 
 He et al., J. Chem. Phys. 114, 1355 (2001). 

Estimate magnitude of capillary force 
(see Appendix 4 for geometric details) 
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(1.3/0.5) x 1.2 ∼ 3 



• Capillary force models range from simple to complex 
• Strong dependence on humidity 

capillary neck   
breaks 

Effect of capillary condensation – important 
modifications to the DMT model 
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Next Lecture: An overview of VEDA – 
the online AFM simulation software 
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Appendix 1: Defining the “Curvature” of a 
Surface in 3D? 

 
Surprisingly, the “curvature” of any surface 
can be specified by two numbers, the two 

radii of curvature at a point P. 
  

P1_Wk3_L1 



• Define a point P on surface qrst by the vector S. 
 

• Define the orientation of the surface by the 
normal vector n. 
 

• Define two tangent unit vectors u1 and u2  that 
are normal to each other and to n. 
 

•  This local coordinate system (u1,u2,n) can be 
used to specify any point ρ on the surface. 
 

• How much a surface “bends and twists” along   a 
line L can be defined by the largest circle tangent 
to the line (positive radius when located on the 
concave side of the surface). 

• The reciprocal of the tangent circle radius R=PP’ is called the curvature (κ=1/R units: 
radians/m) of the surface along the line at the point P.  For gently curving surfaces, the 
curvature is basically the second derivative of the line L at the point P. 
 
• The curvature of the surface will be  a continuous function as the plane defining L is 
rotated through 180o . 
 

• As the plane is rotated, there will be a maximum and a minimum radius of curvature. 
These two extrema are called the principal curvatures at the point P. 
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plane defining  L 
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Defining the curvature of qrst requires finding the radii of 
two circles tangent to the surface. 
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N O 

L 

M 
N 
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P 
Curvature:  κ1=1/R1 

Curvature:  κ2=1/R2 Mean radius of curvature: 
 
 
 
Gaussian curvature: Κ = κ1 κ2 
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1. An important theorem in differential geometry proves that so 
long as plane ABCD is perpendicular to plane FEHG (see previous 
slide), the  mean radius of curvature is invariant, independent 
of the  alignment of the two planes wrt the surface qrst. 
 
2. Once the curvature is known at a point, it can be used to 
derive a differential equation that describes the equation of the 
surface at that point. 
 
3. A few surfaces with their of radii of curvature: 

Further Considerations 

R1 
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Cylinder 
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Appendix 2: Derivation of Young-Laplace and 
Kelvin Equations 

P1_Wk3_L1 

1. If the surface of a liquid is curved, there must be a pressure 
difference: Young-Laplace Equation 

2. If the surface of a liquid is curved,  the equilibrium vapor 
pressure of the liquid must also change: Kelvin Equation 
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Young – Laplace Equation:                  
Pressure difference across a curved interface 

By convention, the radii of 
curvatures R1. R2  are assigned 
positive values if they fall 
inside the concave surface 
under consideration . 
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(Laplace Pressure) 
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a liquid 
surface 

see  P1_Wk2_L2 
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The vapor pressure above a curved surface:  
the Kelvin equation 

Let pressure of vapor 
above flat surface= Po 

h 

x 

h
vapPz 

r2 

liqρ

vapρ

r1   

h
liqP

The situation:  Insert open tube into liquid. Assume the liquid 
does not wet the tube. Liquid will fill tube to a depth h as shown. 
In general, the vapor-liquid interface will be curved, and will be 
characterized by the radii of curvature r1 and r2. In equilibrium at 
temperature T, the pressure difference between the vapor at 
depth h         and the liquid at depth h          must be described by 
the Young – Laplace Equation. Let the vapor/liquid density be 
designated by               respectively. 

h
vap(P ) h

liq(P )

lvap iq, ρρ

P1_Wk3_L1 

Note:  The end result is completely general and is identical 
to that obtained using more general arguments that are not 
so physically transparent. 

liquid 
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Pressure of vapor 
above flat surface= Po 
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see K.P. Galvin, Chem. Engin. Sci. 60, 4659 (2005)  P1_Wk3_L1 
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http://www.sciencedirect.com/science/article/pii/S000925090500268X�


How to describe velocity of 
N gas molecules of mass m at 

a temperature T:  Maxwell 
Speed Probability 

Distribution function (1852) 
ri 

vi 
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Appendix 3: Kinetic Theory of Gases 

2 2 2≡ + + =x y zv v v v speed of gas molecule
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mf v v e
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Note asymmetry – there are more ways to get a large speed than a small one. 

Maxwell Speed Distribution Function 

Shaded area represents probability that 
molecule will have a speed v ± dv/2 

24 

v 

N2 molecule 
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dv 
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Once you know f(v), you can answer many questions: 
2

1

1 2 1 2
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∫

∫

v

v

P v v v f v dv probability of finding molecule with velocity v v v

x v x v f v d v

Why Are Distribution Functions Useful? 

where <x> is the expected (average) value for some quantity x that you define.  
 
For example, the average velocity will be  
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v θ 
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n = molecules/volume 
What is the mean value of velocity in the 
z-direction? 

What is the molecular flux (number of molecules/sec) that will hit a 
unit area of the plate?  

1 1/
2 4z avgJ Collision rate unit area n v nv= = =

For n molecules in the volume, ½ will be moving up, the other half 
will be moving down 

Assuming an ideal gas, how does n depend on T and P?  

B
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=
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26 
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Assuming an ideal gas, what is the incident molecular flux in the –z 
direction?  

1 281 1 :
4 4 2

B
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B B
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k T m mk Tπ π

− − = = ⋅ ⋅ =  

Assuming an ideal gas, how many molecules will strike a unit area of the 
surface in a time t?  
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Assuming an ideal gas, what is the number of molecules that 
fill a 1cm3 volume at STP (0oC (273.15 K), 1 atm (100 kPa))?  

23 3
19 3

3 6 3

1 6 10 1 1 2.7 10
22.4 0.001 10

N mole molecules liter mn cm
V liters mole m cm

−×
≡ = ⋅ ⋅ ⋅ = ×

27 
P1_Wk3_L1 



28 

x 

y 

z 
v θ 

J= molecular flux (number/unit area) in unit time  
n = molecules/volume 

surface 

How many gas atoms strike a unit area of 
a surface in a given time t? 

2

0

: /
2

 Φ = =  ∫ π

t

B

PJdt t units number m
mk T

The answer is found by integrating the molecular flux over the time t 

If the gas has some fraction of water molecules, then it is not surprising 
that a thin layer of water will form on a surface. 

mass m 

Temperature T 

Pressure P 
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Estimate the length of time for a monolayer of gaseous atoms to 
accumulate on a surface?  

The answer depends on the flux of gas atoms on the surface, the sticking 
probability of each gas atom, and the number of active adsorption sites on the 
surface. If the sticking probability is assumed to be 1, then a minimum estimate 
for the monolayer deposition time can be made. Furthermore, it is customary to 
assume there are ~1019 adsorption sites per square meter on a surface, roughly 
equal to the number of atoms per square meter that characterize most surfaces. 

π

π
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×
≈ ⇒ = = × =

2

19
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26

2

2
; 18 /

10

10
3 10 ; 300

monolayer
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monolayer H O

PJ t where J
mk T

mk T
t assume gm mole m m kg T K

P

Vacuum P (Torr) P (Pa) n (m-3) tmonolayer (s) 

atmospheric 760 1x105 2.4x1025 2.8x10-9  

low ~1 130 3.1x1022 2.2x10-6 

medium ~1x10-3 0.13 3.1x1019 2.2x10-3 

high ~1x10-6 1.3x10-4 3.1x1016 2.2 

ultra-high ~1x10-10 1.3x10-8 3.1x1012 2.2x104 
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Appendix 4: Geometric details 
required to calculate Rcap 
 
Here, treat R1, R2 as positive numbers 
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an  ideal tip! 
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B. Bhushan, Springer handbook of nanotechnology, 2nd Edition, Vol. 2; p. 960  (2007). 

Hydrophobic surfaces Hydrophilic surfaces 
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A water molecule has a diameter  do of approximately 0.3 nm.[1,2] 
 
 
The areal density of water is  x/(do)2, where x is the adsorbed water 
layer thickness.  
 
A water  “monolayer (i.e., x=1)”  consists of about 11 molecules/nm2. 
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Water Facts 

[1]. Karis, T. E. “Water Adsorption on Thin Film Media,” Jour. Colloid Interface 
Sci., 225, 196-203, (2000). 
[2]. Adamson, A. W., Hu, P. and Tadros, M. E. “Adsorption and Contact 
Angle Studies,” Jour. Colloid Interface Sci., 49, 184-195 (1974) . 
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