Lecture: P1_Wk5_L6
Image Artifacts

Ron Reifenberger
Birck Nanotechnology Center
Purdue University
2012
Good Tips

D. Schaefer, PhD Thesis, Purdue University (1993)

Real Tips

Blunt tip

Broken tip

D. Schaefer, PhD Thesis, Purdue University (1993)
Tip Imaging Artifacts

Double Tip
- Tip
- Substrate
- Feature in substrate repeated in image

Tip Dilation
- Tip
- Substrate
- Image of feature in substrate broadened by tip “radius”

Sharp Feature in Substrate
- Tip
- Substrate
- Feature images tip

Wide Tip
- Tip
- Substrate
- Depth of feature in substrate inaccurate
Double Tip Image

Apparent width of small object

\[x^2 = (R_{\text{tip}} + R_{\text{feature}})^2 - (R_{\text{tip}} - R_{\text{feature}})^2 \]

\[x^2 = R_{\text{tip}}^2 + 2R_{\text{tip}}R_{\text{feature}} + R_{\text{feature}}^2 - R_{\text{tip}}^2 + 2R_{\text{tip}}R_{\text{feature}} - R_{\text{feature}}^2 \]

\[x = 2\sqrt{R_{\text{tip}}R_{\text{feature}}} \]

apparent feature width \(\approx 2x = 4\sqrt{R_{\text{tip}}R_{\text{feature}}} \)
Summary: Tip Artifacts

Rule of thumb - any feature with a radius of curvature less than radius of curvature of tip is not accurately imaged.

Lesson: Choose a tip shape/cantilever consistent with what you are trying to accomplish.

<table>
<thead>
<tr>
<th>Mode</th>
<th>L(μm)</th>
<th>W(μm)</th>
<th>t(μm)</th>
<th>f₀ (kHz)</th>
<th>kₑ (N/m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contact</td>
<td>400</td>
<td>30</td>
<td>2</td>
<td>18</td>
<td>0.2</td>
</tr>
<tr>
<td>Non-Contact</td>
<td>150</td>
<td>30</td>
<td>5</td>
<td>350</td>
<td>50</td>
</tr>
<tr>
<td>Non-Contact</td>
<td>250</td>
<td>30</td>
<td>7</td>
<td>165</td>
<td>30</td>
</tr>
<tr>
<td>Lateral Force</td>
<td>250</td>
<td>30</td>
<td>1</td>
<td>25</td>
<td>0.1</td>
</tr>
<tr>
<td>Electrostatic</td>
<td>250</td>
<td>30</td>
<td>3</td>
<td>70</td>
<td>2.5</td>
</tr>
<tr>
<td>Magnetic Force</td>
<td>250</td>
<td>30</td>
<td>3</td>
<td>70</td>
<td>2.5</td>
</tr>
<tr>
<td>Under liquids</td>
<td>60</td>
<td>30</td>
<td>0.16</td>
<td>37</td>
<td>0.05</td>
</tr>
</tbody>
</table>

Note: Typical values
Sometimes, special tip shapes are required

Scan Direction
Tip Care

CONTAMINATION
- Thin organic layers
- Oxide layers
- Particulates

DRY CLEANING
- UV (ozone) cleaning
- Heating (pyrolysis)
- Argon/Oxygen/Air plasma (glow discharge)
- Sputtering (UHV)
- Indenting into substrate
- CO\(_2\) “snow” – small dry ice particulates

WET CLEANING
- Chemical Etching
- Ultrasonic cavitation
- Passivation (coating)

Tip Surface:
- SiO\(_2\)
- Si\(_3\)N\(_4\)
- Au-coated
- Pt-coated

Tip Shape:
- Pyramidal
- Conical

Assumption: Cleaning the tip is equivalent to cleaning the whole cantilever.

Unknown tip morphology at the nanoscale?
Unknown microstructure at the nanoscale?
Microstructure of Metal Coating

Gold coated (Thermal Evaporation):

Gold/Palladium coated (Sputtered):
How do you know the tip is dirty?

1. Low resolution:

2. Large adhesive force observed:

Adhesion due to water (typical):

\[
F_{\text{capillary}} = \rho_{\text{Laplace}} A = \frac{R_{\text{gas}} T}{V_{\text{mol}}} \ln \left(\frac{\rho_{\text{vap}}}{\rho_{f}} \right) \pi R_{\text{cap}}^2
\]

\[
= \left(4\pi \gamma R_{\text{tip}} \right) \left(\frac{h + R_{\text{tip}}}{0.52 \text{nm}} \right) \ln \left(\frac{\rho_{\text{vap}}}{\rho_{f}} \right) \approx 3 \left(4\pi \gamma R_{\text{tip}} \right)
\]

Adhesive Force Histograms are a must!

3. Hysteresis in cantilever deflection vs. z data

Notes:
- BOPP=Biaxially-Oriented Polypropylene
- Image size: (2μm x 2μm)

Tests for Scanning Artifacts
(The R^3C^2 Rule)

• Repeat the scan – does it look the same?

• Reverse the scan direction, does the new image look like the original one?

• Rotate the scan direction; do the features rotate as expected?

• Change the scan size; do the size of features scale properly

• Change the scan speed; do the features remain stationary?

Useful if image processing software can subtract two images
Tip/Cantilever Recommendations

- Don’t store microcantilevers in plastic shipping cases without cleaning microcantilever before use.
- Use dedicated teflon or quartz beakers when cleaning (avoids leaching of plasticizers; acid leaching of pyrex).
- Use dedicated tools (tweezers, glass slides, etc.).
- Do not be afraid to clean your tweezers regularly.
- Ozone cleaning and Glow Discharge cleaning are relatively easy (no waste or protective equipment required).
- After cleaning, store tips in clean solvent.
- Under ambient conditions, hydrophobic tips seem to be better than “as-received” tips.
- When in doubt, throw it out!
Concludes Part I

Up Next: Part II - Dynamic AFM