L3.2: Simple Models of Gene Expression

Prof Jenna Rickus
In this lecture

• Mathematical representation of gene expression
 • Gene Activation
 • Gene Repression
• Gene Product Production
 • Hill function model
 • Logic model
• Gene Product Decay
 • Degradation
 • Dilution
• Steady state response & response time for turning genes ON and OFF
Effect of Transcription Factor X on Gene Y

Activation

- Increases probability of RNAp binding
- Increases probability of transcription

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>[X] = high</td>
<td>ON</td>
</tr>
<tr>
<td>[X] = 0</td>
<td>OFF (or low)</td>
</tr>
</tbody>
</table>

Repression

- Reduces probability of RNAp binding
- Reduces probability of transcription

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>[X] = high</td>
<td>OFF (or low)</td>
</tr>
<tr>
<td>[X] = 0</td>
<td>ON</td>
</tr>
</tbody>
</table>
simple deterministic model

Rate of change of Y = \[\frac{dy}{dt} = in - out + \text{generation} - \text{consumption} \]

\(y \) : [Y] conc. protein Y inside cell
\(in \) : rate of transport of Y into cell from outside
\(out \) : rate of transport of Y out of the cell
\(gen \) : rate of transcription / translation of Y
\(cons \) : rate of degradation or dilution

Assume no transport in or out
\[
\frac{dy}{dt} = \text{generation} - \text{consumption}
\]
\[
\frac{dy}{dt} = \beta f(x) - (\alpha_{\text{dilution}} + \alpha_{\text{degradation}})y
\]

Generation

- basal expression rate in ON state, β
- depend on transcription factor $[X] = x$
- x modifies the probability of transcription

Consumption

degradation: passive or active

- $\alpha_{\text{degradation}}$ small for a stable protein
- $\alpha_{\text{degradation}}$ large for rapidly degraded protein

dilution: cell division

- $\alpha_{\text{dilution}} = \text{growth rate}$
Generation: Hill function model

activator

probability of transcription

\[f(x) = \frac{x^n}{x^n + K^n} \]

Repressor

probability of transcription

\[f(x) = \frac{1}{1 + \left(\frac{x}{K}\right)^n} \]
Hill function model of gene activation

\[f(x) = \frac{x^n}{x^n + K^n} \]

- \(K \): units conc.
 - defines functional concentration range of X
 - may correlate with (but is not formally) the binding affinity of X to the DNA
 - other factors contribute to K

- \(n \): Hill coefficient
 - increases nonlinearity of function
 - increases steepness of sigmoidal
 - greater n, more on/off switch-like

<table>
<thead>
<tr>
<th>[X]</th>
<th>prob.</th>
<th>rate</th>
<th>gene</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x \gg K)</td>
<td>(\Rightarrow 1)</td>
<td>(\Rightarrow \beta)</td>
<td>ON high</td>
</tr>
<tr>
<td>(x = K)</td>
<td>(0.5)</td>
<td>(\beta/2)</td>
<td>ON mod</td>
</tr>
<tr>
<td>(x \ll K)</td>
<td>(\Rightarrow 0)</td>
<td>(\Rightarrow 0)</td>
<td>OFF</td>
</tr>
</tbody>
</table>
Hill function model of gene activation

In the extreme of $n \rightarrow \infty$

approximate hill function with logic model

$$f(x) = \theta(x > K)$$

<table>
<thead>
<tr>
<th>x/K</th>
<th>θ</th>
<th>generation</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x > K$</td>
<td>= 1</td>
<td>= β</td>
</tr>
<tr>
<td>$x < K$</td>
<td>= 0</td>
<td>= 0</td>
</tr>
</tbody>
</table>

- Activation is switch like
- K becomes threshold concentration
- Increasing the stoichiometry of binding one way to increase n

Note: In reality n is rarely > 4. However logic model approximation is still useful in dynamic analysis of large circuits & for building intuition regarding circuit behavior.
general equation for gene activation

\[
\frac{dy}{dt} = \beta f(x) - (\alpha_{\text{dilution}} + \alpha_{\text{degradation}})y
\]

dynamics to turn ON

System is initially OFF
\[x(t<0) = 0\]
Gene expression turns on at \(t = 0\)
\[x(0) = x \gg K\]

governing rate equation for protein Y

\[
\frac{dy}{dt} = \beta \frac{x^n}{x^n + K^n} - \alpha y
\]

dynamics to turn OFF

System is initially ON
\[x(t<0) = x \gg K\]
Gene expression turns OFF at \(t = 0\)
\[x(0) = 0\]

What is the steady state response?
What is the response time to turn ON or OFF?
\[\frac{dy}{dt} = \beta \frac{x^n}{x^n + K^n} - \alpha y \]

governing equation for simple activation

\[\frac{dy}{dt} = \beta \theta(x > K) - \alpha y \]

logic model approximation

\[\frac{dy}{dt} = \beta - \alpha y \]

strong activation \((x \gg K, \text{assume } f(x) = 1)\)

steady state solution

\[y_{ss} = \frac{\beta}{\alpha} \]

trajectory of \(y(t)\) to turn on

system initially off - no expression, turn on at \(t = 0\)

\[y(0) = 0 \]

\[y(t) = \frac{\beta}{\alpha} (1 - e^{-\alpha t}) \]
Response time to turn ON

\[
y(t) = \frac{\beta}{\alpha} (1 - e^{-\alpha t})
\]

\[
y(t_{1/2}) = \frac{\beta}{\alpha} (1 - e^{-\alpha t_{1/2}}) = \frac{1}{2} y_{ss} = \frac{1}{2} \frac{\beta}{\alpha}
\]

\[
(1 - e^{-\alpha t_{1/2}}) = \frac{1}{2}
\]

\[
t_{1/2} = \frac{\ln 2}{\alpha}
\]

steady state expression level depends on expression strength (\(\beta\)) & degradation/dilution rate (\(\alpha\))

response time depends only on degradation/dilution rate (\(\alpha\))
OFF kinetics

\[\frac{dy}{dt} = \beta - \alpha y \]

system initially fully ON

turns off at \(t = 0 \)

\[\frac{dy}{dt} = \beta - \alpha y \]

\[\frac{dy}{dt} = -\alpha y \quad \text{simple exponential decay} \]

\[y(0) = y_{ss} = \frac{\beta}{\alpha} \]

\[y(t) = \frac{\beta}{\alpha} (e^{-\alpha t}) \]

\[t_{1/2} = \frac{\ln 2}{\alpha} \]
1. Work out the ON and OFF kinetics for a repressor using the same approach.

2. Work out the ON and OFF kinetics for an activator without making the logistic approximation of the hill function
 • Does it make much of a difference? Qualitatively? Quantitatively?
 • Use numerical integration (e.g. matlab)
 • Vary n, K, β, & α. How do the curves change?
Next up

• Take a closer look at the gene product (protein) consumption rate, α

• Start looking at dynamics when we put together activators/repressors to make simple circuits