Introduction to Bioelectricity

Week 6: Numerical methods of solving differential equations
Lecture 6.1: Discrete-time solutions to continuous-time problems

By Pedro P. Irazoqui
Professor of Biomedical Engineering and
Electrical and Computer Engineering
Purdue University
Week 6: Numerical methods

- Lecture 6.1: Discrete-time solutions
Lecture 6.1: Discrete-time solutions

- Types of equations:
 - Equation
 \[y = f(x) \]
 - Differential equation
 - 2nd order differential equation
 - Ordinary differential equation (ODE)
 - Homogeneous linear ODE
Lecture 6.1: Discrete-time solutions

• Types of equations:
 • Equation
 \[y = f(x) \]
 • Differential equation
 \[\frac{dy}{dx} = f(x) \]
 • 2nd order differential equation
 • Ordinary differential equation (ODE)
 • Homogeneous linear ODE
Lecture 6.1: Discrete-time solutions

- **Types of equations:**
 - **Equation**
 \[y = f(x) \]
 - **Differential equation**
 \[\frac{dy}{dx} = f(x) \]
 - **2\text{nd} order differential equation**
 \[\frac{d^2y}{dx^2} = f\left(\frac{dy}{dx}, x\right) \]
 - **Ordinary differential equation (ODE)**

- **Homogeneous linear ODE**
Lecture 6.1: Discrete-time solutions

• Types of equations:
 • Equation
 \[y = f(x) \]
 • Differential equation
 \[\frac{dy}{dx} = f(x) \]
 • 2nd order differential equation
 \[\frac{d^2y}{dx^2} = f\left(\frac{dy}{dx}, x\right) \]
 • Ordinary differential equation (ODE)
 \[\frac{d^2y}{dx^2} = f\left(\frac{dy}{dx}, x\right) \quad \text{vs} \quad \frac{d^2y}{dt^2} = f\left(\frac{dy}{dt}, \frac{dy}{dx}, x\right) \]
 • Homogeneous linear ODE
Lecture 6.1: Discrete-time solutions

• Types of equations:
 • Equation
 \[y = f(x) \]
 • Differential equation
 \[\frac{dy}{dx} = f(x) \]
 • 2nd order differential equation
 \[\frac{d^2y}{dx^2} = f\left(\frac{dy}{dx}, x\right) \]
 • Ordinary differential equation (ODE)
 \[\frac{d^2y}{dx^2} = f\left(\frac{dy}{dx}, x\right) \quad \text{Vs} \quad \frac{d^2y}{dt^2} = f\left(\frac{dy}{dt}, \frac{dy}{dx}, x\right) \]
 • Homogeneous linear ODE
 \[y = f(x_1 + x_2) = f(x_1) + f(x_2) \]
Lecture 6.1: Discrete-time solutions

• Types of equations:
 • Equation
 \[J_m = J_c + J_{K^+} + J_{Na^+} + J_L \]
 • Differential equation
 • 2nd order differential equation
 • Ordinary differential equation (ODE)
 • Homogeneous linear ODE
Lecture 6.1: Discrete-time solutions

• Types of equations:
 • Equation
 \[J_m = J_c + J_{K^+} + J_{Na^+} + J_L \]
 • Differential equation
 \[\frac{\partial V_m}{\partial t} = \frac{J_c}{C_m} \]
 • 2nd order differential equation
 • Ordinary differential equation (ODE)
 • Homogeneous linear ODE
Lecture 6.1: Discrete-time solutions

• Types of equations:
 • Equation
 \[J_m = J_c + J_{K^+} + J_{Na^+} + J_L \]
 • Differential equation
 \[\frac{\partial V_m}{\partial t} = \frac{J_C}{C_m} \]
 • 2nd order differential equation
 \[\frac{1}{2\pi a(r_o + r_i)} \frac{\partial^2 V_m(z,t)}{\partial z^2} = \frac{C_m}{\partial t} \frac{\partial V_m}{\partial t} + G_{K^+} (V_m - V_{K^+}) + G_{Na^+} (V_m - V_{Na^+}) + G_L (V_m - V_L) \]
 • Ordinary differential equation (ODE)

• Homogeneous linear ODE
Lecture 6.1: Discrete-time solutions

- Types of equations:
 - Equation
 \[J_m = J_c + J_{K^+} + J_{Na^+} + J_L \]
 - Differential equation
 \[\frac{\partial V_m}{\partial t} = \frac{J_C}{C_m} \]
 - 2nd order differential equation
 \[\frac{1}{2\pi a(r_0 + r_i)} \frac{\partial^2 V_m(z,t)}{\partial z^2} = C_m \frac{\partial V_m}{\partial t} + G_{K^+} (V_m - V_{K^+}) + G_{Na^+} (V_m - V_{Na^+}) + G_L (V_m - V_L) \]
 - Ordinary differential equation (ODE)
 \[\frac{1}{v^2 2\pi a(r_0 + r_i)} \frac{d^2 V_m(z,t)}{dt^2} = C_m \frac{dV_m}{dt} + G_{K^+} (V_m - V_{K^+}) + G_{Na^+} (V_m - V_{Na^+}) + G_L (V_m - V_L) \]
 - Homogeneous linear ODE
Lecture 6.1: Discrete-time solutions

• Types of equations:
 • Equation
 \[J_m = J_c + J_{K^+} + J_{Na^+} + J_L \]
 • Differential equation
 \[\frac{\partial V_m}{\partial t} = \frac{J_C}{C_m} \]
 • 2nd order differential equation
 \[\frac{1}{2\pi a(r_o + r_i)} \frac{\partial^2 V_m(z,t)}{\partial z^2} = C_m \frac{\partial V_m}{\partial t} + G_{K^+} (V_m - V_{K^+}) + G_{Na^+} (V_m - V_{Na^+}) + G_L (V_m - V_L) \]
 • Ordinary differential equation (ODE)
 \[\frac{1}{v^2 2\pi a(r_o + r_i)} \frac{d^2 V_m(z,t)}{dt^2} = C_m \frac{dV_m}{dt} + G_{K^+} (V_m - V_{K^+}) + G_{Na^+} (V_m - V_{Na^+}) + G_L (V_m - V_L) \]
 • Homogeneous linear ODE
 \[\frac{1}{v^2 2\pi a(r_o + r_i)} \frac{d^2 V_m(z,t)}{dt^2} = f(J_1 + J_2 + J_3 + ...) = f(J_1) + f(J_2) + f(J_3) + ... \]
Lecture 6.1: Discrete-time solutions

• Analytical solutions:

\[\frac{dy}{dx} = f(x) = \cos(x) \]
Lecture 6.1: Discrete-time solutions

• Analytical solutions:

\[\frac{dy}{dx} = f(x) = \cos(x)\]

\[\therefore y = \sin(x) + C\]
Lecture 6.1: Discrete-time solutions

- **Analytical solutions:**
 \[
 \frac{dy}{dx} = f(x) = \cos(x)
 \]
 \[
 \therefore y = \sin(x) + C
 \]

- **Or:**
 \[
 \lambda^2 \frac{\partial^2 v_m(z,t)}{\partial z^2} = v_m(z,t) + \tau \frac{\partial v_m(z,t)}{\partial t} - \lambda^2 r_o k_e(z,t)
 \]
Lecture 6.1: Discrete-time solutions

- **Analytical solutions:**
 \[
 \frac{dy}{dx} = f(x) = \cos(x)
 \]

 \[\therefore y = \sin(x) + C\]

- **Or:**
 \[
 \lambda^2 \frac{\partial^2 v_m(z,t)}{\partial z^2} = v_m(z,t) + \tau \frac{\partial v_m(z,t)}{\partial t} - \lambda^2 r_o k_e(z,t)
 \]

 \[
 \therefore v_m(z,t) = \frac{\lambda r_o Q_e}{\tau} \frac{1}{\sqrt{4\pi(t/\tau)}} e^{-\left(\frac{z}{\lambda}\right)^2/(4t/\tau)} e^{-t/\tau}
 \]
Lecture 6.1: Discrete-time solutions

- Discrete-time solutions:

![Graph showing discrete-time solutions with time in ms on the x-axis and voltage (V) on the y-axis. The graph shows a pattern with peaks at time 1 and a flattening out at times 2 and 3.]
Lecture 6.1: Discrete-time solutions

- Discrete-time solutions:
Lecture 6.1: Discrete-time solutions

• New variables:

- \(N \) = number of samples
- \(n \) = sample number from 0 through \(N-1 \)
- \(T \) = total interval sampled
- \(h \) = separation between samples = \(T/(N-1) \)
- \(V \) = dependent variable (in this example)
- \(t \) = independent variable (in this example)
Lecture 6.1: Discrete-time solutions

• Sampling rate:
Lecture 6.1: Discrete-time solutions

• **Sampling rate:**

• **Aliasing:**
Lecture 6.1: Discrete-time solutions

• Sampling rate:

• Aliasing:
Lecture 6.1: Discrete-time solutions

- **Sampling rate:**

- **Aliasing:**
Lecture 6.1: Discrete-time solutions

- Sampling rate:

- Aliasing:
Lecture 6.1: Discrete-time solutions

• Sampling rate:

• Aliasing:
Lecture 6.1: Discrete-time solutions

• Nyquist-Shannon sampling theorem:
 • Signals of interest are band-limited
Lecture 6.1: Discrete-time solutions

- Nyquist-Shannon sampling theorem:
 - Sampling frequency $f_{\text{sampling}} \geq 2f_s$
Lecture 6.1: Discrete-time solutions

- Nyquist-Shannon sampling theorem:
 - Noise is not band limited

![Diagram showing signal and noise bands with frequency axis from -f_s to f_s](image-url)
Lecture 6.1: Discrete-time solutions

- Nyquist-Shannon sampling theorem:
 - To avoid aliasing noise, we need to filter
Lecture 6.1: Discrete-time solutions

- Nyquist-Shannon sampling theorem:
 - New bandwidth is determined by filter order
Lecture 6.1: Discrete-time solutions

- Nyquist-Shannon sampling theorem:
 - New bandwidth is determined by filter order

\[f_{\text{sampling}} \geq 2f_c \]

\[f_{\text{sampling}} = \frac{1}{h} = \frac{N - 1}{T} \geq 2f_c \approx 5 \text{kHz}^* \]
Lecture 6.1: Discrete-time solutions

• Nyquist-Shannon sampling theorem:

\[
\therefore f_{\text{sampling}} = \frac{1}{h} = \frac{N - 1}{T} \geq 2f_c \approx 5\text{kHz}^*
\]

• Why oversample?
Lecture 6.1: Discrete-time solutions

• Nyquist-Shannon sampling theorem:

\[f_{sampling} = \frac{1}{h} = \frac{N - 1}{T} \geq 2f_c \approx 5\,kHz^* \]

• Why oversample?
 – Tethered device power is cheap
Lecture 6.1: Discrete-time solutions

• Nyquist-Shannon sampling theorem:

\[f_{\text{sampling}} = \frac{1}{h} = \frac{N - 1}{T} \geq 2f_c \approx 5\text{kHz}^* \]

• Why oversample?
 – Tethered device power is cheap
 – Lower order anti-aliasing filter
Lecture 6.1: Discrete-time solutions

- Nyquist-Shannon sampling theorem:
 \[f_{\text{sampling}} = \frac{1}{h} = \frac{N - 1}{T} \geq 2f_c \approx 5\text{kHz}^* \]

- Why oversample?
 - Tethered device power is cheap
 - Lower order anti-aliasing filter
 - Improved effective resolution (averaging)
Lecture 6.1: Discrete-time solutions

• Nyquist-Shannon sampling theorem:

 \[f_{\text{sampling}} = \frac{1}{h} = \frac{N - 1}{T} \geq 2f_c \approx 5 \text{kHz}^* \]

• Why oversample?
 – Tethered device power is cheap
 – Lower order anti-aliasing filter
 – Improved effective resolution (averaging)
 – Lower and higher frequency quantization noise
Lecture 6.1: Discrete-time solutions

• Nyquist-Shannon sampling theorem:

\[f_{\text{sampling}} = \frac{1}{h} = \frac{N - 1}{T} \geq 2f_c \approx 5 \text{kHz}^* \]

• Why oversample?
 – Tethered device power is cheap
 – Lower order anti-aliasing filter
 – Improved effective resolution (averaging)
 – Lower and higher frequency quantization noise

• Why not oversample?
Lecture 6.1: Discrete-time solutions

- Nyquist-Shannon sampling theorem:

\[
\therefore f_{\text{sampling}} = \frac{1}{h} = \frac{N - 1}{T} \geq 2f_c \approx 5 \text{kHz}^*
\]

- Why oversample?
 - Tethered device power is cheap
 - Lower order anti-aliasing filter
 - Improved effective resolution (averaging)
 - Lower and higher frequency quantization noise

- Why not oversample?
 - Implantable device size dominated by battery