Introduction to Bioelectricity

Week 6: Numerical methods of solving differential equations
Lecture 6.2: Euler method

By Pedro P. Irazoqui
Professor of Biomedical Engineering and Electrical and Computer Engineering
Purdue University
Week 6: Numerical methods

• Lecture 6.2: Euler method
Lecture 6.2: Euler method

• Leonhard Euler (1707-1783)
 • Physicist:
 – Astronomy (parallax)
 – Mechanics (beam theory)
 – Optics (wave theory)
 – Music theory

• Mathematician
 – Notation
 – Analytical solutions of real-world problems
Lecture 6.2: Euler method

• Euler method of numerical solution:
 • Equation is of the type
 \[
 \frac{dy}{dt} = y' = f(y, t)
 \]
Lecture 6.2: Euler method

- Euler method of numerical solution:
 - Equation is of the type
 \[
 \frac{dy}{dt} = y' = f(y, t)
 \]
 - Problem is of the type:
 \[
 y_{n+1} = y_n + hf(y, t)
 \]
Lecture 6.2: Euler method

- Euler method of numerical solution:
 - Equation is of the type
 \[\frac{dy}{dt} = y' = f(y, t) \]
 - Problem is of the type:
 \[y_{n+1} = y_n + hf(y, t) \]
 - Euler assumes straight lines
 \[\therefore y_{n+1} = y_n + hy'_n \]
Lecture 6.2: Euler method

• Euler method of numerical solution:

\[y_{n+1} = y_n + h y'_n \]
Lecture 6.2: Euler method

- Euler method of numerical solution:
 \[y_{n+1} = y_n + hy'_n \]
Lecture 6.2: Euler method

- Euler method of numerical solution:

\[y_{n+1} = y_n + h y'_n \]
Lecture 6.2: Euler method

- Euler method of numerical solution:
 \[y_{n+2} = y_{n+1} + hy'_{n+1} \]
Lecture 6.2: Euler method

- Euler method of numerical solution:

\[y_{n+3} = y_{n+2} + h y'_{n+2} \]
Lecture 6.2: Euler method

• Euler method of numerical solution:

\[y_{n+4} = y_{n+3} + hy'_{n+3} \]
Lecture 6.2: Euler method

- Euler method of numerical solution:
 - Reconstruction
Lecture 6.2: Euler method

- Euler method of numerical solution:
 - Example:

 \[
 \frac{dy}{dt} = y + t^3 - 2
 \]

 Given

 \[
 y(0) = 0
 \]

 \[
 0 \leq t \leq 4
 \]

 \[
 N = 41
 \]
Lecture 6.2: Euler method

- Euler method of numerical solution:
 - Example:
 \[
 \frac{dy}{dt} = y + t^3 - 2
 \]
 Given
 \[
 y(0) = 0
 \]
 \[
 0 \leq t \leq 4
 \]
 \[
 N = 41
 \]
 - First:
 \[
 h = \frac{T}{N - 1} = \frac{4s}{40} = 0.1s
 \]
Lecture 6.2: Euler method

- **Euler method of numerical solution:**
 - Example:

\[
\frac{dy}{dt} = y + t^3 - 2
\]

\[y(0) = 0\]

\[0 \leq t \leq 4\]

\[N = 41\]

- **Second:**

\[y_{n+1} = y_n + hy'_n\]

\[\therefore y_1 = y_0 + hy'_0 = 0 + 0.1(y + t^3 - 2) = 0 + 0.1(0 + 0.1^3 - 2)\]

\[= -0.1999\]
Lecture 6.2: Euler method

- Euler method of numerical solution:
 - Example:

\[
\frac{dy}{dt} = y + t^3 - 2
\]
\[
y(0) = 0
\]
\[
0 \leq t \leq 4
\]
\[
N = 41
\]

- Third:

\[
y_{n+2} = y_{n+1} + hy'_{n+1}
\]

\[
\therefore y_2 = y_1 + hy'_1 = -0.1999 + 0.1(-0.1999 + 0.2^3 - 2)
\]

\[
= -0.41909
\]
Lecture 6.2: Euler method

• Euler method observations
 • No calculus!

• Sources of error
 – Truncation error
 » Straight line assumption is wrong
 \[y_{n+1} = y_n + hy'_n + \frac{h^2}{2} y''_n + \cdots \]
 Taylor expansion
 Truncation error
 » To lower error, decrease h
 – Round-off error
 » Every floating point calculation introduces error
 » To lower error, increase h
Lecture 6.2: Euler method

- Taylor method
 - decrease truncation error
 - without increasing round-off error

\[y_{n+1} = y_n + h y'_n + \frac{h^2}{2} y''_n + \frac{h^3}{3!} y'''_n + \cdots + \frac{h^\infty}{\infty!} y^\infty_n \]

2nd order solution \hspace{3cm} \text{Truncation error}

\[y_{n+1} = y_n + h y'_n + \frac{h^2}{2} y''_n + \frac{h^3}{3!} y'''_n + \cdots + \frac{h^\infty}{\infty!} y^\infty_n \]

3rd order solution \hspace{3cm} \text{Truncation error}

- Add loads of calculus, sometimes impossible
Lecture 6.2: Euler method

• Taylor method of 2nd order solution:
 • Example:

\[
\frac{dy}{dt} = y + t^3 - 2
\]

\[y(0) = 0\]

\[0 \leq t \leq 4\]

\[N = 41\]
Lecture 6.2: Euler method

• Taylor method of 2nd order solution:

\[
\frac{dy}{dt} = y + t^3 - 2
\]

- Example:

Given:

\[
y(0) = 0
\]

\[
0 \leq t \leq 4
\]

\[
N = 41
\]

Calculated:

\[
h = \frac{T}{N - 1} = \frac{4s}{40} = 0.1s
\]

\[
\frac{dy}{dt} = y' = y + t^3 - 2
\]

\[
\therefore y'' = 2t^2 + 1
\]
Lecture 6.2: Euler method

• Taylor method of 2nd order solution:

 \[\frac{dy}{dt} = y + t^3 - 2 \]

 \(y(0) = 0 \)

 \(0 \leq t \leq 4 \)

 \(N = 41 \)

 • Example:

 \[
 h = \frac{T}{N - 1} = \frac{4s}{40} = 0.1s
 \]

 \[
 \frac{dy}{dt} = y' = y + t^3 - 2
 \]

 \[
 \therefore y'' = 2t^2 + 1
 \]

 Given
 Calculated

 \[
 y_{n+1} = y_n + hy'_n + \frac{h^2}{2} y''_n
 \]

 \[
 y_1 = y_0 + hy'_1 + \frac{h^2}{2} y''_1 = 0 + 0.1(0 + 0.1^3 - 2) + \frac{0.1^2}{2}(2(0.1)^2 + 1)
 \]
Lecture 6.2: Euler method

• Final note on numerical instabilities
 • Let's say
 \[y = -x^2 \]
 \[y' = -2x \]
 \[y(0) = 1 \]
Lecture 6.2: Euler method

• Final note on numerical instabilities
 • Lets say
 \[y = -x^2 \]
 \[y' = -2x \]
 \[y(0) = 1 \]

 • Using Euler as an example
 \[y_{n+1} = y_n + hy' = y_n - 2hy_n = (1 - 2h)y_n \]
Lecture 6.2: Euler method

• Final note on numerical instabilities
 • Lets say
 \[y = -x^2 \]
 \[y' = -2x \]
 \[y(0) = 1 \]
 • Using Euler as an example
 \[y_{n+1} = y_n + hy'_n = y_n - 2hy_n = (1 - 2h)y_n \]
 • If
 \[h > \frac{1}{2} \]
Lecture 6.2: Euler method

- Final note on numerical instabilities
 - Lets say
 \[y = -x^2 \]
 \[y' = -2x \]
 \[y(0) = 1 \]
 - Using Euler as an example
 \[y_{n+1} = y_n + hy' = y_n - 2hy_n = (1 - 2h)y_n \]
 - If
 \[h > \frac{1}{2} \]
 - Then
 \[y_{n+1} > y_n !!! \]