Introduction to Bioelectricity

Week 7: Practicum
Lecture 7.3: Analog-to-digital conversion

By Pedro P. Irazoqui
Professor of Biomedical Engineering and Electrical and Computer Engineering
Purdue University
Week 7: Practicum

• Lecture 7.3: Analog-to-digital conversion
Lecture 7.3: Analog-to-digital conversion

• Dynamic range
 • Describes range of input amplitudes for A/D
Lecture 7.3: Analog-to-digital conversion

- Dynamic range
 - Here max amplitude is \(\sim 1\text{mV peak-to-peak} \)
Lecture 7.3: Analog-to-digital conversion

- Dynamic range
 - Dynamic range is determined by max amplitude
Lecture 7.3: Analog-to-digital conversion

- Resolution
 - Determined by $V_{res} = \frac{Range}{2^{\text{bits}}}$
Lecture 7.3: Analog-to-digital conversion

- **Resolution**
 - Determined by $V_{res} = \frac{Range}{2^{bits}}$
Lecture 7.3: Analog-to-digital conversion

- Resolution
 - For 1-bit ADC: $V_{res} = \frac{\text{Range}}{2^{\text{bits}}} = \frac{1}{2} = 0.5 \text{ V}
Lecture 7.3: Analog-to-digital conversion

- **Resolution**
 - For 2-bit ADC: \(V_{res} = \frac{Range}{2^{\text{bits}}} = \frac{1}{4} = 0.25 \text{ V} \)
Lecture 7.3: Analog-to-digital conversion

• Resolution
 • For 3-bit ADC: \(V_{res} = \frac{Range}{2^{\text{bits}}} = \frac{1}{8} = 0.125 \, V \)
Lecture 7.3: Analog-to-digital conversion

- Resolution
 - For 24-bit ADC:
 \[V_{res} = \frac{Range}{2^{bits}} = \frac{1}{16,777,215} = 60 \text{ nV} \]
Lecture 7.3: Analog-to-digital conversion

• Resolution
 • Min signal amplitude is limited by noise
Lecture 7.3: Analog-to-digital conversion

• Resolution
 • Compression and range
Lecture 7.3: Analog-to-digital conversion

• Sampling rate
Lecture 7.3: Analog-to-digital conversion

- Sampling rate
Lecture 7.3: Analog-to-digital conversion

• Sampling rate

N = number of samples
Lecture 7.3: Analog-to-digital conversion

• Sampling rate

- \(N \) = number of samples
- \(n \) = sample number from 0 through \(N-1 \)
Lecture 7.3: Analog-to-digital conversion

- **Sampling rate**

 - $N = \text{number of samples}$

 - $n = \text{sample number from 0 through } N-1$

 - $T = \text{total interval sampled}$

$N=25$
$n=1$
$n=0$
$t (\text{ms})$

V

$n=24$
Lecture 7.3: Analog-to-digital conversion

- **Sampling rate** (more in 6.1)

- \(N = \) number of samples
- \(n = \) sample number from 0 through \(N-1 \)
- \(T = \) total interval sampled
- \(h = \) separation between samples = \(T/(N-1) \)
Lecture 7.3: Analog-to-digital conversion

- Sampling rate
 - Oversampling can reduce min visible signal
Lecture 7.3: Analog-to-digital conversion

• Homework 3: analog-to-digital converter
 • Download the datasheet
 • From the datasheet answer the following:
 • What does each pin do?
 • What is the dynamic range?
 • What is the resolution?
 • How do you set the sampling frequency?
Lecture 7.3: Analog-to-digital conversion

- HW3 Practicum: build ADC

- Maxim 1242
Lecture 7.3: Analog-to-digital conversion

- HW3 Practicum: build ADC
 - What is C_6 for?
 - What is C_5 for?
 - Why do you need both?
 - Why does C_6 need to be near?
 - Why doesn’t C_5?
Lecture 7.3: Analog-to-digital conversion

- HW3 Practicum: build ADC
 - Analog-to-digital converter (frontside)
Lecture 7.3: Analog-to-digital conversion

- HW3 Practicum: build ADC
 - Note: moved decoupling cap:
Lecture 7.3: Analog-to-digital conversion

• HW3 Practicum: build ADC
 • Analog-to-digital converter (frontside)
Lecture 7.3: Analog-to-digital conversion

- HW3 Practicum: build ADC
 - Analog-to-digital converter (backside)