Introduction to Bioelectricity

Week 2: Chemical basis of electrical signals
Lecture 2.5: Neurotransmitters and pathology

By Pedro P. Irazoqui
Associate Professor of Biomedical Engineering and Electrical and Computer Engineering
Purdue University
Week 2: Chemical basis of electrical signals

- Lecture 2.5: Neurotransmitters and pathology

Table 6.1

Functional Features of the Major Neurotransmitters *(Part 1)*

<table>
<thead>
<tr>
<th>Neurotransmitter</th>
<th>Postsynaptic effect</th>
<th>Precursor(s)</th>
<th>Rate-limiting step in synthesis</th>
<th>Removal mechanism</th>
<th>Type of vesicle</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACh</td>
<td>Excitatory</td>
<td>Choline + acetyl CoA</td>
<td>CAT</td>
<td>AChEase</td>
<td>Small, clear</td>
</tr>
<tr>
<td>Glutamate</td>
<td>Excitatory</td>
<td>Glutamine</td>
<td>Glutaminase</td>
<td>Transporters</td>
<td>Small, clear</td>
</tr>
<tr>
<td>GABA</td>
<td>Inhibitory</td>
<td>Glutamate</td>
<td>GAD</td>
<td>Transporters</td>
<td>Small, clear</td>
</tr>
<tr>
<td>Glycine</td>
<td>Inhibitory</td>
<td>Serine</td>
<td>Phosphoserine</td>
<td>Transporters</td>
<td>Small, clear</td>
</tr>
<tr>
<td>Catecholamines</td>
<td>Excitatory</td>
<td>Tyrosine</td>
<td>Tyrosine hydroxylase</td>
<td>Transporters, MAO, COMT</td>
<td>Small dense-core, or large irregular dense-core</td>
</tr>
</tbody>
</table>

(epinephrine, norepinephrine, dopamine)
Lecture 2.5: Neurotransmitters

- Small molecule neurotransmitters

Small-Molecule Neurotransmitters

Amino Acids
- Glutamate
- Aspartate
- GABA
- Glycine

Small-Molecule Neurotransmitters

Biogenic Amines
- Dopamine
- Norepinephrine
- Epinephrine

NanoHub Purdue University
Lecture 2.5: Neurotransmitters

- **Neurotransmitter effects**

<table>
<thead>
<tr>
<th>Neurotransmitter</th>
<th>Postsynaptic effect</th>
<th>Precursor(s)</th>
<th>Rate-limiting step in synthesis</th>
<th>Removal mechanism</th>
<th>Type of vesicle</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACh</td>
<td>Excitatory</td>
<td>Choline + acetyl CoA</td>
<td>CAT</td>
<td>AChEase</td>
<td>Small, clear</td>
</tr>
<tr>
<td>Glutamate</td>
<td>Excitatory</td>
<td>Glutamine</td>
<td>Glutaminase</td>
<td>Transporters</td>
<td>Small, clear</td>
</tr>
<tr>
<td>GABA</td>
<td>Inhibitory</td>
<td>Glutamate</td>
<td>GAD</td>
<td>Transporters</td>
<td>Small, clear</td>
</tr>
<tr>
<td>Glycine</td>
<td>Inhibitory</td>
<td>Serine</td>
<td>Phosphoserine</td>
<td>Transporters</td>
<td>Small, clear</td>
</tr>
<tr>
<td>Catecholamines (epinephrine,</td>
<td>Excitatory</td>
<td>Tyrosine</td>
<td>Tyrosine hydroxylase</td>
<td>Transporters, MAO,COMT</td>
<td>Small dense-core, or large irregular dense-core</td>
</tr>
<tr>
<td>norepinephrine, dopamine)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The most common postsynaptic effect is indicated; the same transmitter can elicit postsynaptic excitation or inhibition depending on the nature of the ion channels affected by transmitter binding (see Chapter 7).
Lecture 2.5: Neurotransmitters

- Large molecule neurotransmitters

PEPTIDE NEUROTRANSMITTERS

Example: Methionine enkephalin (Tyr–Gly–Gly–Phe–Met)

![Methionine Enkephalin Structure](image-url)
Lecture 2.5: Neurotransmitters

- Neurotransmitter effects

<table>
<thead>
<tr>
<th>Neurotransmitter</th>
<th>Postsynaptic effect</th>
<th>Precursor(s)</th>
<th>Rate-limiting step in synthesis</th>
<th>Removal mechanism</th>
<th>Type of vesicle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serotonin (5-HT)</td>
<td>Excitatory</td>
<td>Tryptophan</td>
<td>Tryptophan hydroxylase</td>
<td>Transporters, MAO</td>
<td>Large, dense-core</td>
</tr>
<tr>
<td>Histamine</td>
<td>Excitatory</td>
<td>Histidine</td>
<td>Histidine decarboxylase</td>
<td>Transporters</td>
<td>Large, dense-core</td>
</tr>
<tr>
<td>ATP</td>
<td>Excitatory</td>
<td>ADP</td>
<td>Mitochondrial oxidative phosphorylation; glycolysis</td>
<td>Hydrolysis to AMP and adenosine</td>
<td>Small, clear</td>
</tr>
<tr>
<td>Neuropeptides</td>
<td>Excitatory and inhibitory</td>
<td>Amino acids (protein synthesis)</td>
<td>Synthesis and transport</td>
<td>Proteases</td>
<td>Large, dense-core</td>
</tr>
<tr>
<td>Endocannabinoids</td>
<td>Inhibits inhibition</td>
<td>Membrane lipids</td>
<td>Enzymatic modification of lipids</td>
<td>Hydrolasis by FAAH</td>
<td>None</td>
</tr>
<tr>
<td>Nitric oxide</td>
<td>Excitatory and inhibitory</td>
<td>Arginine</td>
<td>Nitric oxide synthase</td>
<td>Spontaneous oxidation</td>
<td>None</td>
</tr>
</tbody>
</table>

*The most common postsynaptic effect is indicated; the same transmitter can elicit postsynaptic excitation or inhibition depending on the nature of the ion channels affected by transmitter binding (see Chapter 7).
Lecture 2.5: Neurotransmitters

• **Dopamine**
 • Excitatory
 • Small in number
 • Outsized influence
 • Plays a role in:
 - Ventral Tegmental Area
 » motivation
 » reinforcement/reward
 - Substantia Nigra
 » motor control

• **Clinical:**
 - Parkinson’s and L-DOPA
 - anti-psychotics
 - cocaine
Lecture 2.5: Neurotransmitters

• Norepinephrine
 • Excitatory
 • Plays a role in:
 – Locus Coeruleus
 » attention
 – Sympathetic Nervous System
 » fight or flight
 • Clinical:
 – attention deficit hyperactivity disorder, amphetamines
 – depression and SNRI
 – schizophrenia
 – methamphetamine
Lecture 2.5: Neurotransmitters

- Epinephrine
 - Excitatory
 - Third type of catecholamine
 - Plays a role as:
 - neurotransmitter & hormone
 - fight or flight response
 - raises resting heart rate
 - increases respiratory rate
 - vasoconstriction
 - muscle contraction

- Clinical
 - cardiac arrest
Lecture 2.5: Neurotransmitters

- **Histamine**
 - Excitatory
 - Acts in the hypothalamus
 - Works through metabotropic receptors
 - Plays a role in:
 - immune response
 - capillary permeability (white blood cells)
 - inflammatory response
 - allergic reactions
- **Clinical**
 - regulating sleep
 - stomach acid
 - addiction
Lecture 2.5: Neurotransmitters

• Serotonin
 • Excitatory
 • Derived from tryptophan
 • Acts in the pons and upper brainstem
 • Mostly metabotropic receptors
 • Plays a role in:
 – Sleep/wakefullness
 – Mood
 – Appetite

• Clinical
 – depression and SSRIs
 – ecstasy, amphetamines, and cocaine
Lecture 2.5: Neurotransmitters

- **Acetylcholine**
 - Excitatory
 - Broken down by AChE
 - Post-synaptic receptors are often nicotinic
 - Plays a role in:
 - neuromuscular junction
 - somatic
 - autonomic
 - Clinical
 - tobacco leads to relaxation and sense of euphoria
 - myasthenia gravis targets ACh receptors
 - sarin gas inhibits AChE
Lecture 2.5: Neurotransmitters

• Other small molecule NTs
 • Glutamate
 – primary excitatory NT, half of all synapses
 – ionotropic
 • GABA and glycine
 – primary inhibitory NT
 – excitatory in the developing brain
 – Epilepsy
Lecture 2.5: Neurotransmitters

- Other drugs affecting neurotransmitters
 - Opioids
 - modulate pain/pleasure pathways
 - dopamine and opioid (peptide) receptors
 - Cannabis
 - hypothalamus
 - cannabinoid receptors
 » metabotropic
 » most common g-protein receptors
 - Clinical use
 » nausea and vomiting
 » IOP