Answer the **four multiple choice questions** below by choosing the one, best answer. Then ask a question about the lecture.

1) What is the continuity equation in words?
 a) Rate of increase = (inflow – outflow) + drift - diffusion
 b) Rate of increase = (inflow – outflow) + generation - recombination
 c) Rate of increase = (inflow - outflow)
 d) Rate of increase = (inflow + outflow)
 e) Rate of increase = (outflow + inflow) + generation - recombination

2) What approximations / assumptions are made in deriving the minority carrier diffusion equation.
 a) Steady-state conditions
 b) No recombination
 c) No generation
 d) Low level injection
 e) Validity of Einstein Relation

3) If minority carrier electrons are injected at the left face of a p-type semiconductor, and there is **no recombination-generation** in the semiconductor, and the right contact enforces equilibrium conditions (i.e. $\Delta n = 0$), how does the steady-state minority electron profile, $\Delta n(x)$, vary with position?
 a) $\Delta n(x)$ decreases linearly with position from left to right.
 b) $\Delta n(x)$ increases linearly with position from left to right.
 c) $\Delta n(x)$ decreases as the square of distance from left to right.
 d) $\Delta n(x)$ increases as the square of distance from left to right.
 e) $\Delta n(x)$ decreases exponentially with position from left to right.
4) If minority carrier electrons are injected at the left face of a p-type semiconductor, and there is **significant recombination** in the semiconductor, and the right contact enforces equilibrium conditions (i.e. $\Delta n = 0$), how does the steady-state minority electron profile, $\Delta n(x)$, vary with position?

 a) $\Delta n(x)$ decreases linearly with position from left to right.
 b) $\Delta n(x)$ increases linearly with position from left to right.
 c) $\Delta n(x)$ decreases as the square of distance from left to right.
 d) $\Delta n(x)$ increases as the square of distance from left to right.
 e) $\Delta n(x)$ decreases exponentially with position from left to right.

5) What question(s) do you have about this lecture?

Turn in to Ms. Wanda Dallinger, EE-326 before 4:30 PM Friday, Feb. 22