ECE606: Solid State Devices
Lecture 16: Carrier Transport

Muhammad Ashraful Alam
alam@purdue.edu
Outline

1) Overview
2) Drift Current
3) Physics of Mobility
4) High field effects
5) Conclusion

REF: Advanced Device Fundamentals, Pages 175-192
Current Flow Through Semiconductors

\[I = G \times V \]

\[= q \times n \times v \times A \]

Depends on chemical composition, crystal structure, temperature, doping, etc.

Quantum Mechanics + Equilibrium Statistical Mechanics

\[\Rightarrow \text{Encapsulated into concepts of effective masses and occupation factors (Ch. 1-4)} \]

Transport with scattering, non-equilibrium Statistical Mechanics

\[\Rightarrow \text{Encapsulated into drift-diffusion equation with recombination-generation (Ch. 5 & 6)} \]
Non-equilibrium Systems

Chapter 5

vs.

Chapter 6

vs.

I

V
Summary of Transport Equations ...

\[\nabla \cdot D = q \left(p - n + N_D^+ - N_A^- \right) \]

\[\frac{\partial n}{\partial t} = \frac{1}{q} \nabla \cdot \mathbf{J}_n - r_N + g_N \]

\[\mathbf{J}_n = q n \mu_n E + q D_N \nabla n \]

\[\frac{\partial p}{\partial t} = \frac{-1}{q} \nabla \cdot \mathbf{J}_p - r_P + g_P \]

\[\mathbf{J}_p = q p \mu_p E - q D_P \nabla p \]
Outline

1) Overview
2) Drift Current
3) Physics of Mobility
4) High field effects
5) Conclusion
Meaning of Effective Mass ...

\[
\left(-\frac{\hbar^2}{2m_0} \frac{d^2}{dx^2} + U_{\text{crys}}(x) + U_{\text{ext}}(x)\right)\psi = E\psi
\]

\[
\left(-\frac{\hbar^2}{2m^*} \frac{d^2}{dx^2} + U_{\text{ext}}(x)\right)\phi = E\phi
\]
Drift by Electric field

\[J_n = qn\mu_n\mathcal{E} \]

\[\frac{d(m_n^*\nu)}{dt} = -q\mathcal{E} - \frac{m_n^*\nu}{\tau_n} \]

\[\nu(t) = -\frac{q\tau_n}{m_n^*}\mathcal{E}\left[1 - e^{-\frac{t}{\tau_n}}\right] \]
Drift by Electric field

\[\nu(t) = -\frac{q\tau_n}{m_n^*} \mathcal{E} \left[1 - e^{-\frac{t}{\tau_n}} \right] \]

\[= -\frac{q\tau_n}{m_n^*} \mathcal{E} \quad (t \to \infty, \ 1-2 \ \text{ps}) \]

\[\equiv \mu_n \mathcal{E} \]

\[J_n = qn \mu_n \mathcal{E} \]

(Theory valid once \(t > 1-2 \ \text{ps} \))
Outline

1) Overview
2) Drift Current
3) Physics of Mobility
4) High field effects
5) Conclusion
Mobility and Physics of Scattering Time

\[\mu_n = \frac{q \tau_n}{m_n^*} \]

Fermi’s Golden rule ...

\[\tau_n^{-1} \sim \left| \frac{2\pi}{\hbar} \int_{-\infty}^{\infty} \psi^*(x)U(x)\psi(x)dx \right|^2 \]
Phonon and Ionized Impurity Scattering

Ionized impurity

\[\tau_n \sim \frac{T^{3/2}}{N_D} \]

Higher temperature, more phonon scattering

\[\tau_n \sim T^{-3/2} \]
Multiple Scattering Events

- Ionized impurity
- Phonon scattering
- others

\[
\frac{1}{\mu_n} = \frac{1}{\mu_{ph}} + \frac{1}{\mu_{II}}
\]

\[
\Rightarrow \mu_n = \frac{\mu_{ph}\mu_{II}}{\mu_{ph} + \mu_{II}}
\]

\[
= \mu_{\text{min}} + \left(\frac{\mu_{ph}\mu_{II}}{\mu_{ph} + \mu_{II}} - \mu_{\text{min}} \right)
\]

\[
= \mu_{\text{min}} + \left(\frac{\mu_0}{1 + (N_I/N_0)^\alpha} \right)
\]

\[

t_n = \frac{1}{\tau_n} + \frac{1}{\tau_{II}} + \frac{1}{\tau_{ph}} + \frac{1}{\tau_s} + \cdots
\]

\[
\frac{1}{\mu_n} = \frac{m_n^*}{q\tau_n}
\]

Matthession Rule
Model for Ionized impurity Scattering

\[\mu_n = \mu_{n,\text{min}} + \left(\frac{\mu_{0,n}}{1 + \left(\frac{N_I}{N_{0,n}} \right)^\alpha_n} \right) \]

\[m_n^* \]

[Graph showing electron and hole mobilities as functions of \(N_A \) or \(N_D \) with values at different concentrations and temperatures.]

\[\mu_{n,\text{min}} \]
Temperature-dependent Mobility

\[\mu_n \sim \tau_n \sim T^{-3/2} \]
Outline

1) Overview
2) Drift Current
3) Physics of Mobility
4) High Field Effects
5) Conclusion
Mobility at High Fields?

What causes velocity saturation at high fields?

Where does all the mobility formula in device simulator come from?
Velocity Saturation in Si/Ge

\[E = 0 \quad J_1 = J^+ - J^- = 0 \]

\[E \ll E_c \quad J_2 = J^+ - J^- > J_1 \]

\[E \approx E_c \quad J_3 = J^+ - J^- > J_2 \]

\[E \gg E_c \quad J_4 = J^+ - J^- \approx J_3 \]
What type of scattering would you need for inter-valley transfer?
Doping dependent Resistivity

\[\mathcal{E} = \rho J \]

\[J = q(\mu_n n + \mu_p p)\mathcal{E} \]

\[\rho = \frac{1}{q(\mu_n n + \mu_p p)} \]

\[= \frac{1}{q\mu_n N_D} \text{ ... for n-type} \]

\[= \frac{1}{q\mu_p N_A} \text{ ... for p-type} \]
Conclusion

1) Poisson and drift-diffusion equations form a complete semi-classical transport model that can explain wide variety of device phenomena.

2) Drift current results from response of electrons/holes to electric field. The physics of mobility is complex and material dependent.

3) Constancy of low-field mobility can be checked by experiments.